Remedial Action Report Jones Road Ground Water Plume Superfund Site Harris County, Texas EPA Identification No. TXN00605460 EPA Region 6 Remedial Action Contract 2 Contract: EP-W-06-004 Task Order: 0129-RARA-06NK Prepared for U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202-2733 Prepared by EA Engineering, Science, and Technology, Inc., PBC 405 S. Highway 121 Building C, Suite 100 Lewisville, Texas 75067 (972) 315-3922 Texas Registration No. F003896 June 2019 Revision: 01 EA Project No. 14342.129 #### **CONTENTS** | Secti | <u>on</u> | | <u>Page</u> | |-------|-------------|---|-------------| | 1.0 | D 100 | | | | 1.0 | | RODUCTION | | | | 1.1 | REPORT ORGANIZATION | | | | 1.2 | SITE DESCRIPTION | | | | 1.3 | SITE BACKGROUND | | | | 1.4 | ENVIRONMENTAL SETTINGS | | | 2.0 | 1.5 | COMPLETED SCOPE | | | 2.0 | | NSTRUCTION ACTIVITIES | | | | 2.1 | SITE PREPARATION | | | | | 2.1.1 Temporary Facility and Staging Area | | | | | 2.1.3 Access | | | | 2.2 | 2.1.4 Existing Utility Locates | | | | 2.2 | | | | | 2.3 | 2.2.1 Management of Investigation Derived Waste DEVIATIONS | | | | 2.3 | EVALUATION OF INJECTION AND SAMPLING DATA | | | | 2.4 | SITE RESTORATION | | | 3.0 | | RONOLOGY OF EVENTS | | | 4.0 | _ | RFORMANCE STANDARDS AND QUALITY CONTROL | | | 4.0 | 4.1 | QUALITY CONTROL AND ASSURANCE ACTIVITIES | | | | 4.2 | DATA VALIDATION | | | | 4.3 | DOCUMENTATION | | | | т.Э | 4.3.1 Field Documentation. | | | | | 4.3.2 Photographic Record | | | 5.0 | INS | PECTIONS | | | 3.0 | 5.1 | PRE-FINAL AND FINAL INSPECTION | | | | 5.2 | HEALTH AND SAFETY | | | | S. 2 | 5.2.1 Levels of Protection | | | | | 5.2.2 Health and Safety Training | | | | | 5.2.3 Health and Safety Meetings | | | | | 5.2.4 Health and Safety Incidents | | | 6.0 | OPE | ERATIONAL DATES FOR LIMITED ISB REMEDY | | | 7.0 | | ERATION AND MAINTENANCE OF ISB REMEDY | | | 8.0 | | NTACT INFORMATION | | | | | | | #### **REFERENCES** Contents, Page 2 of 2 June 2019 #### **ATTACHMENT** #### 1 TECHNICAL MEMORANDUM ON RESULTS OF LIMITED ISB #### **LIST OF FIGURES** | <u>Number</u> | <u>Title</u> | |---------------|-------------------| | 1 | SITE LOCATION MAP | | 2 | WELL LOCATION MAP | #### LIST OF ACRONYMS AND ABBREVIATIONS bgs Below ground surface CQAP Construction Quality Assurance Plan DCE 1,2-dichloroethene EA Engineering, Science, and Technology, Inc., PBC EPA U.S. Environmental Protection Agency ft Feet/foot FM Farm-to-market HSP Health and Safety Plan ISB *In-situ* bioremediation NPL National Priority List PCE Tetrachloroethene; perchloroethylene PPE Personal protective equipment PRB Permeable reactive barrier QA Quality assurance QC Quality control RA Remedial Action RAC Remedial Action Contract RI Remedial Investigation ROD Record of Decision ROW Right-of-Way SAP Sampling and Analysis Plan SHSO Site Health and Safety Officer Site Jones Road Ground Water Plume Superfund Site TCE Trichloroethene; trichloroethylene TCEQ Texas Commission on Environmental Quality TOM Task Order Monitor WBZ Water-Bearing Zone Page 1 of 10 June 2019 #### 1.0 INTRODUCTION The U.S. Environmental Protection Agency (EPA) has authorized EA Engineering, Science, and Technology, Inc., PBC (EA) under Remedial Action Contract (RAC) No. EP-W-06-004, Task Order No. 0129-RARA-06NK, to implement the focused Remedial Action (RA), i.e. *in situ* bioremediation (ISB) of the Shallow Water-Bearing Zone (WBZ), at the Jones Road Ground Water Plume Superfund Site (Site), which is located in the northwest portion of Harris County, Texas. EA executed this RA for the Site as defined in the September 2010 *Record of Decision* (ROD) (EPA 2010) and in accordance with the RA Work Plan dated August 2015 (EA 2015a). The initial RA Report Revision 00 (EA 2016b) was submitted on September 2016, and included the limited ISB conducted from 26 January to 1 February 2016. This revised RA Report (Revision 01) incorporates hot spot ISB treatment conducted in January 2018 as well as groundwater monitoring results since the initial limited ISB. The results of limited ISB and subsequent work and performance assessment are attached in an updated Technical Memorandum on Results of Limited In Situ Bioremediation which is attached to this report. #### 1.1 REPORT ORGANIZATION The organization of this RA Report was based on the EPA guidance document, *Close Out Procedures for National Priorities List Sites* (EPA 2011), and includes the following information: - Section 1 Organization of this RA Report, general site description and background, and the regulatory history, including information on the RA objectives and the selected remedy outlined in the ROD (EPA 2010). - Section 2 Construction activities conducted as part of the RA. - Section 3 Chronology of events. - Section 4 Performance standards and the quality control (QC) and quality assurance (QA) steps taken to verify that the requirements of the ROD were satisfied. - Section 5 Inspections performed and health and safety aspects of the work. - Section 6 Operational dates. - Section 7 Operations and maintenance. - Section 8 Contact information for the major design and remediation contractors, EPA Task Order Monitor (TOM) and Texas Commission on Environmental Quality (TCEQ) project manager. Page 2 of 10 June 2019 • The references cited in this report follow Section 8. All figures and tables cited in this report immediately follow the body of the report. In support of this RA Report, Attachment 1 presents the Technical Memorandum on Results of Limited ISB. #### 1.2 SITE DESCRIPTION The Site is located in the northwest portion of Harris County, Texas (Figure 1). The source of contamination is the former Bell Dry Cleaners facility, which was located within the Cypress Shopping Center at 11600 Jones Road, approximately 0.5 miles north of the intersection of Jones Road and Farm-to-Market (FM) 1960, outside the city limits of northwest Houston, Texas. The Cypress Shopping Center was constructed in 1984, and the former Bell facility began dry cleaning operations sometime in 1988, using perchloroethylene (PCE), also known as tetrachloroethene. The former Bell facility continued operating through May 2002 when the dry cleaning operations were shut down. The hazardous substances present at the Site include PCE and related daughter products trichloroethylene (TCE), cis-1,2-dichloroethylene (DCE), and vinyl chloride. The area around the Site includes residential, commercial, and light industrial development. Residential development has been active since the 1960s, effectively eliminating wildlife habitat from the area. Jones Road is the principal north-south corridor through the area, and FM 1960 (approximately one-half mile to the south) provides a southwest-northeast transportation corridor. Commercial development is dominant along Jones Road with residential and limited commercial development along the side streets. Cypress Creek is located approximately one mile to the northwest of the Site, and White Oak Bayou is located approximately 3,500 feet (ft) to the south. #### 1.3 SITE BACKGROUND The Site has undergone numerous investigations beginning in 1994 and continuing through 2008; it was proposed to the National Priorities List (NPL) on 30 April 2003, and was finalized to the NPL on 29 September 2003. From August 2003 through May 2008, the TCEQ's statelead contractor performed a remedial investigation (RI) and feasibility study at the Site, which characterized the nature and extent of constituents of concern present in environmental media. During the RI, 19 monitoring wells were installed across the area of the Site (Figure 2). Soil, groundwater, and vapor intrusion samples were collected for analysis, and a bench-scale treatability study was completed to evaluate the application of *in situ* chemical oxidation and bioremediation treatment technologies. Routine quarterly groundwater sampling was also performed. Homes in the area have private water supply wells, and some wells are shared between multiple homes. From January through November 2008, EPA conducted a time-critical removal action that included the installation of a water line and connections to homes and businesses at the Site. The water line service area is shown on Figure 1. Approximately 51 percent of the well owners agreed to discontinue use of their water wells and begin using water from the water line. The remaining 49 percent of the well owners declined to participate in the water line project and June 2019 continue to use their private water supply wells. The White Oak Bend Municipal Utility District services the water line. The ROD was signed on 23 September 2010 and sets forth the selected remedy. There is only one planned operable unit for the Site and the selected RA is intended to address all areas of concern. The selected remedy is Alternative 4, *In Situ* Enhancements to Pump and Treat (EPA 2010). The *in situ* treatments involve treating the soil and groundwater in place. In June 2012, an ISB pilot test was executed at the site in order to refine the remedial design. Baseline sampling was conducted, followed by injection of EHC-L® into the deep WBZ and shallow WBZ. Four post-injection sampling events were conducted at one month, three months, six months and three years after injection. Based on the results from the pilot test, limited ISB has been performed and is the focus of this report. #### 1.4 ENVIRONMENTAL SETTINGS The Site is located in northwest Harris County, on the Gulf Coast Plain. This physiographic province is characterized by nearly flat topography that gently slopes toward the Gulf of Mexico at approximately five feet per mile or less. Most of the coastal area is low-lying and drained by meandering bayous and sloughs. Surface water drainage is managed primarily through open roadside bar ditches. Drainage generally flows into the ditches, then to drainage ways that flow south to White Oak Bayou.
White Oak Bayou flows southeast into downtown Houston where it enters Buffalo Bayou. Buffalo Bayou flows through the Houston Ship Channel toward Galveston Bay and then to the Gulf of Mexico. The local geology to approximately 400 ft bgs consists of clay, sand, and silt consistent with the fluvial depositional environment. The subsurface geology consists of Lissie Formation, which is underlain by the Willis Sand, which is underlain by the Goliad Formation and Fleming Formation. The principal water-bearing strata at the Site are the Chicot Aquifer, composed of the Lissie Formation and Willis Sand, and the Evangeline Aquifer comprised of the Goliad Sand and Upper Fleming Formation. Beneath the Site, groundwater is present within two intervals of the Chicot Aquifer: the shallow WBZ encountered at around 20 to 30 ft bgs, and the deep WBZ encountered around 110 ft bgs. A 50-ft interval of dewatered Chicot Aquifer now separates the perched shallow WBZ from the deep WBZ. The shallow WBZ is comprised of a silty sand to sandy silt that is interbedded with sandy clay and clayey sand. The shallow aquifer is underlain by clay that is present from approximately 35 to 60 ft bgs. The groundwater flow within the shallow aquifer is toward the south at a gradient of 0.02 ft/ft. The deep WBZ is present in a poorly graded, very fine-grained sand that is interbedded with silty and sandy clay and clayey sand. The clay beds are generally less than 10 ft thick, but locally they June 2019 retard the vertical movement of water. Therefore, the saturated sand beds commonly have different hydraulic heads within the vertical profile (Gabrysch 1984). #### 1.5 COMPLETED SCOPE The completed scope described in this report includes the following tasks: - Site preparation activities conducted: - o Set up of temporary facility and staging area - o Access agreements and coordination with property owners - Utility location - RA field activities conducted: - o Baseline groundwater sampling - Full scale injection of EHC-L[®] and bacteria at 63 ISB injection points (Revision 00) - Site restoration - o Post-injection groundwater sampling - o Hot spot injection of EHC-L® at 10 ISB injection points (Revision 01) - o Post-injection groundwater sampling - Site restoration Subsequent sections detail the tasks performed to complete the scope of work. #### 2.0 CONSTRUCTION ACTIVITIES Construction activities included site preparation, mobilization, injection, site restoration, baseline and post-injection sampling. Attachment E of Appendix A includes field notes and Attachment F includes photographic documentation of field activities. Figure 14 of Appendix A shows the approximate locations of the injections. Section 3 summarizes the chronology of RA activities. #### 2.1 SITE PREPARATION The following sections describe site preparation activities, the temporary facility and staging area, access agreements, and utility locates. #### 2.1.1 Temporary Facility and Staging Area The Cypress Shopping Center parking lot was used as a temporary facility and staging area. An exclusion zone was set and maintained around the chemical staging, mixing and injection locations. #### 2.1.3 Access Prior to initiating any work at the Site, an access agreement was obtained to all properties where work was conducted. EA staff coordinated with the property owners and identified the proposed ISB injection locations. #### 2.1.4 Existing Utility Locates The project area includes roadway rights-of-way (ROWs) and private commercial properties where subsurface injections were conducted. Prior to commencing work, the subcontractor called 811 to obtain ROW and property perimeter location services. A private utility locator then cleared all known and unknown lines using the most appropriate combination of techniques and facility-specific information regarding buried utilities and transmission pipelines. All utilities were located, visibly marked, and identified according to the type of utility. #### 2.2 REMEDIAL ACTION FIELD ACTIVITIES The RA activities included pre-injection groundwater sampling, limited ISB injection at 63 points and hot spot treatment at 10 points, and subsequent post-injection groundwater sampling. A chronology of site RA activities can be found in section 3. All work was performed in accordance with the RA Work Plans (EA 2015a, 2016a), Sampling and Analysis Plan (SAP) (EA 2016c), Health and Safety Plan (HSP) (EA 2015b), and Site Management Plan (EA 2015c). Documentation of the RA field activities related to the preinjection sampling, injection of the ISB amendment, and post-injection sampling are included in the *Technical Memorandum on Results of Limited ISB* in Appendix A. #### 2.2.1 Management of Investigation Derived Waste Purge water generated during the groundwater sampling events was properly containerized, profiled and disposed of as non-hazardous waste. Construction debris was properly disposed of. #### 2.3 DEVIATIONS There were no deviations from the work plan. #### 2.4 EVALUATION OF INJECTION AND SAMPLING DATA Evaluation of groundwater sampling data is documented in the *Technical Memorandum on Results of Limited ISB* in Appendix A. #### 2.5 SITE RESTORATION After each injection event was completed, boring locations were backfilled with bentonite and patched with concrete to match the existing surface. Any spilled product was vacuumed up and used for re-injection after being screened for solids and debris. Page 6 of 10 June 2019 #### 3.0 CHRONOLOGY OF EVENTS This section presents the chronological order of events associated with the focused RA, and ISB of the Shallow WBZ. The relevant milestone activities are listed below. | Activity | <u>Dates</u> | |------------------------------|-------------------------------| | Injection Pilot Test | 5 June 2012 – 6 June 2015 | | Pre-injection sampling | 30 November – 3 December 2015 | | ISB Injection Event | 22 January – 2 February 2016 | | Post-injection sampling | 19 – 22 April 2016 | | Post-injection sampling | 20 – 22 September 2016 | | Post-injection sampling | 21 – 23 February 2017 | | Post-injection sampling | 11 – 13 September 2017 | | ISB Hot Spot Injection Event | 27 – 29 March 2018 | | Post-injection sampling | 14 – 17 May 2018 | | Post-injection sampling | 05 – 07 November 2018 | | | | #### 4.0 PERFORMANCE STANDARDS AND QUALITY CONTROL The Construction Quality Assurance Plan (CQAP) (EA 2015d) details the approved construction QA, construction QC plans and procedures. Construction activities carefully adhered to the plans and procedures identified in the CQAP. The SAP (EA 2016c) identifies the QC requirements related to water sampling. The objective of this portion of the RA was to inject EHC-L® and bacteria to biodegrade site contaminants with the potential to impact the underlying Lower Chicot drinking water source; principally PCE and degradation products TCE and DCE. Analytical data was analyze in accordance with the measurement quality objectives outlined in the SAP (EA 2016c). #### 4.1 QUALITY CONTROL AND ASSURANCE ACTIVITIES To ensure that the injection of the ISB amendment followed the work plan and was achieved on schedule, EA maintained a site manager onsite throughout all activities associated with this RA. #### 4.2 DATA VALIDATION The analytical data associated with samples collected in November 2015, April 2016, September 2016, February 2017, September 2017, May 2018, and November 2018 were validated. The validation reports are included in Attachment B of Appendix A. #### 4.3 DOCUMENTATION Field activities and sampling tasks were documented at the time of execution as discussed below. #### **4.3.1** Field Documentation Bound field logbooks were maintained by the EA site manager and team members to provide a daily record of significant events and observations. Logs for field batch-mixing, injection quantities, and injection timeframes were maintained during the injection event. In addition, water level gauging and baseline sampling activities (purging quantities, parameter stabilization, low-flow sampling, etc.) at all wells were recorded on field data sheets. Populated data sheets and field logbook entries are provided in Attachment C and E of Appendix A, respectively. #### 4.3.2 Photographic Record A project photographic record was kept as part of the RA ISB field activities. Attachment F of Appendix A provides photographic documentation of injection activities. The EA site manager and field staff used digital cameras to create the photographic record. #### 5.0 INSPECTIONS This section addresses activities and issues associated with completing the limited ISB RA at the Site. Section 5.1 discusses the pre-final and final inspection and Section 5.2 discusses site health and safety. #### 5.1 PRE-FINAL AND FINAL INSPECTION No pre-final or final inspection was conducted. #### 5.2 HEALTH AND SAFETY Site-specific health and safety procedures were implemented during the limited ISB RA at the Site in accordance with the HSP (EA 2015b). These procedures were designed to protect the health and safety of workers and visitors while present at the Site and were enforced by EA's site health and safety officer (SHSO) during the limited ISB RA activities. The following sections discuss levels of protection, hazard evaluation and control, health and safety meetings, and health and safety incidents. #### 5.2.1 Levels of Protection The personal protective equipment (PPE) requirements were set at Level D, consisting of coveralls or work clothes, safety-toed boots, hard hat (as needed), safety glasses, high-visibility Page 8 of 10 June 2019 reflective vest, hearing protection (as needed), leather gloves (as needed), and nitrile gloves (as needed) for all site activities. #### 5.2.2 Health and Safety Training The SHSO and the site field personnel were trained, as required, to meet the requirements of the U.S. Department of Labor, Occupational Safety and Health Administration Standard, 29 Code of Federal Regulations
1926.65, *Hazardous Waste Operations and Emergency Response* and qualify as hazardous waste site workers. Onsite management and supervisors who were directly responsible for hazardous waste site workers received at least an additional eight hours of specialized supervisor training. #### **5.2.3** Health and Safety Meetings All personnel on-site, including EA and subcontractor employees, attended mandatory daily health and safety meetings, which were conducted by the EA SHSO or a designated alternate. Protocol and emergency response procedures established in the HSP (EA 2015b) were discussed prior to construction activities and all personnel were required to read the HSP and sign the compliance agreement. Daily safety meetings usually began with a brief synopsis of planned activities and identification of any physical, chemical, or biological hazards associated with those activities. Other topics discussed each morning included PPE requirements, emergency procedures, proper communication skills to be used to prevent accidents, emergency contacts, location of emergency telephone numbers, first aid kits, and the route to the nearest hospital. All participants at the daily health and safety meetings were required to sign the attendance log kept by EA's SHSO. #### 5.2.4 Health and Safety Incidents No health and safety incidents occurred. #### 6.0 OPERATIONAL DATES FOR LIMITED ISB REMEDY The limited ISB remedy became operational immediately after injection was completed to establish the permeable reactive barrier (PRB). A PRB is a subsurface wall of reactive material that treats groundwater as it passes through. Treatment commenced immediately following injection, and therefore the PRBs were operational at that point. Optimal treatment within the PRB is expected to occur once the bacteria culture population reaches maximum size. Injection Injection ISB Hot Spot Injection Operational Date 1 February 2016 27—29 March 2018 June 2019 #### 7.0 OPERATION AND MAINTENANCE OF ISB REMEDY There is no scheduled operation and maintenance required as part of the ISB RA activities; however, sampling of site wells is necessary following injection to monitor groundwater conditions and to assess progress of the remedy. Maintenance of the groundwater pH will be assessed to ensure optimal conditions for bacterial growth. #### 8.0 CONTACT INFORMATION #### The EPA TOM was: Raji Josiam U.S. EPA Region 6 1201 Elm Street, Suite 500 Dallas, TX 75270-2102 (214) 665-8529 josiam.raji@epa.gov #### The TCEQ Project Manager was: Marilyn Long Texas Commission for Environmental Quality Remediation Division (MC-136) 12100 Park 35 Circle, Building D Austin, TX 78753 512-239-0761 Marilyn.Long@tceq.texas.gov EPA used the following contractor for oversight and implementation of the limited ISB RA: EA Engineering, Science, and Technology, Inc., PBC 405 S. Highway 121, Building C, Suite 100 Lewisville, TX 75067 972-315-3922 Contract No.: EP-W-06-004 Task Order No.: 0129-RARA-06NK #### The EA Project Manager was: Pat Appel EA Engineering, Science, and Technology, Inc., PBC 405 S. Highway 121, Building C, Suite 100 Lewisville, TX 75067 972-315-3922 June 2019 EA Engineering, Science, and Technology, Inc., PBC EA used the following subcontractor for the limited ISB RA: Vista Geoscience 130 Capital Drive, Suite C Golden, CO 80401 281-310-5560 February 2019 #### REFERENCES Image Source: 2008-2009 Texas Orthoimagery Program provided by Texas Strategic Mapping Program (StratMap), TNRIS Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 2 Well Location Map ### Appendix A **Technical Memorandum on Results of Limited ISB** # Technical Memorandum on Results of Limited In Situ Bioremediation Jones Road Ground Water Plume Superfund Site Harris County, Texas EPA Identification No. TXD000605460 Remedial Action Contract 2 Full Service Contract: EP-W-06-004 Task Order: 0129-RARA-06NK Prepared for U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202-2733 *Prepared by* EA Engineering, Science, and Technology, Inc. 405 S. Highway 121 Building C, Suite 100 Lewisville, Texas 75067 (972) 315-3922 > June 2019 Revision: 01 EA Project No. 14342129 #### **CONTENTS** | Section | <u>on</u> | | <u>Page</u> | | |---------|--|---|-------------|--| | 1.0 | INTRODUCTION | | | | | | 1.1 | SITE DESCRIPTION | 1 | | | | 1.2 | GEOLOGY AND HYDROLOGY | 1 | | | | 1.3 | ISB GOALS | 2 | | | 2.0 | CHRONOLOGY OF EVENTS | | 2 | | | | 2.1 | BASELINE SAMPLING | 2 | | | | 2.2 | INJECTION OF EHC-L® | | | | | 2.3 | POST-INJECTION SAMPLING | 3 | | | | 2.4 | HOT SPOT INJECTION OF EHC-L® | | | | | 2.5 | POST-INJECTION SAMPLING | 3 | | | 3.0 | OVERVIEW OF Reductive Dechlorination Process | | 3 | | | | 3.1 | REDUCTIVE DECHLORINATION | 4 | | | | 3.2 | ENHANCED ATTENUATION THROUGH BIOSTIMULATION | 5 | | | 4.0 | ISB FIELD ACTIVITIES | | 6 | | | | 4.1 | BASELINE SAMPLING | 6 | | | | 4.2 | INJECTION PROCESS | | | | | 4.3 | POST-INJECTION SAMPLING | | | | | 4.4 | HOT SPOT INJECTION PROCESS | | | | | 4.5 | POST HOT SPOT INJECTION SAMPLING | 10 | | | 5.0 | ISB RESULTS | | 10 | | | | 5.1 | INJECTION PRESSURE AND FLOW RATE | 10 | | | | 5.2 | CONCENTRATIONS OF CVOCS | | | | | 5.3 | IN SITU BIOREMEDIATION INDICATORS | | | | 6.0 | PERI | PERFORMANCE EVALUATION | | | | | 6.1 | ISB INJECTION PERFORMANCE EVALUATION | 11 | | | | | 6.1.1 Geochemical Field Parameter Trends | 11 | | | | | 6.1.2 Reduction of PCE Concentrations | 13 | | | | | 6.1.3 Formation of Daughter Products | 13 | | | | | 6.1.4 Formation of Deleterious Byproducts | 14 | | | 7.0 | SUM | MARY AND CONCLUSIONS | 15 | | | 8.0 | REF | FRENCES | 16 | | #### LIST OF TABLES | Number | <u>Title</u> | |--------|--| | 1 | Gauging Data | | 2 | Ground Water Field Geochemistry Results | | 3 | Groundwater Analytical Results For Dissolved Metals | | 4 | Groundwater Analytical Results For Monitored Natural Attenuation Parameters | | 5 | Groundwater Analytical Results for Volatile Organic Compounds | | 6 | Summary of Injection Mechanics (6A Initial Injection, 6A Hot Spot Treatment) | | 7 | Field Measurement Indicators for Reductive Dechlorination | #### LIST OF FIGURES | <u>Number</u> | <u>Title</u> | |---------------|--| | 1 | Site Map | | 2 | Tetrachloroethene Results | | 3 | Trichloroethene Results | | 4 | cis 1,2-dichloroethene Results | | 5 | trans 1,2-dichloroethene Results | | 6 | Vinyl Chloride Results | | 7 | Ethene Results | | 8 | Ethane Results | | 9 | Methane Results | | 10 | Total Organic Carbon Results | | 11 | Dissolved Arsenic Results | | 12 | Dissolved Iron Results | | 13 | Dissolved Manganese Results | | 14 | Product Injection Locations | | 15 | ORP Trends | | 16 | Dissolved Oxygen Trends | | 17 | pH Trends | | 18 | Dissolved Arsenic Concentration Trends | | 19 | Dissolved Iron Concentration Trends | | 20 | Dissolved Manganese Concentration Trends | | 21 | Methane Concentration Trends | | 22 | TOC Concentration Trends | | 23 | PCE Concentration Trends | | 24 | TCE Concentration Trends | | 25 | cis 1,2-DCE Concentration Trends | | 26 | trans 1,2-DCE Concentration Trends | | 27 | Vinyl Chloride Concentration Trends | | 28 | Ethene Concentration Trends | | 29 | Ethane Concentration Trends | | 30 | Molar Concentrations of Chlorinated Ethenes in MW-01 | | 31 | Molar Concentrations of Chlorinated Ethenes in MW-02 | | 32 | Molar Concentrations of Chlorinated Ethenes in MW-03 | | 33 | Molar Concentrations of Chlorinated Ethenes in MW-06 | | 34 | Molar Concentrations of Chlorinated Ethenes in MW-20 | | 35 | Molar Concentrations of Chlorinated Ethenes in MW-22 | #### LIST OF ATTACHMENTS ATTACHMENT A: EHC-L® MANUFACTURER'S INFORMATION ATTACHMENT B: LABORATORY REPORTS ATTACHMENT C: FIELD FORMS ATTACHMENT D: VISTA GEOSCIENCE INJECTION REPORT ATTACHMENT E: FIELD NOTES ATTACHMENT F: PHOTOGRAPHIC DOCUMENTATION ATTACHMENT G: STATE OF TEXAS INJECTION WELL REPORTS #### ACRONYMS AND ABBREVIATIONS μg/L Microgram per liter bgs Below ground surface CLP Contract Laboratory Program CVOC Chlorinated volatile organic compounds DCE Dichloroethylene DO Dissolved oxygen EA Engineering, Science, and Technology, Inc., PBC EPA U.S. Environmental Protection Agency ft Feet (foot) FM Farm to Market ISB *In situ* bioremediation MCL Maximum Contaminant Level mg/L Milligram per liter MNA Monitored natural attenuation mV Millivolt ORP Oxygen reduction potential PCE Tetrachloroethylene; Perchloroethylene pH Log of concentration of hydrogen ions, an index of acidity psi Pound per square inch RA Remedial Action RDC Reductive dechlorination Site Jones Road Groundwater Plume Superfund site SM Standard Method SVE Soil vapor extraction TCE Trichloroethylene TM Technical memorandum TOC Total organic carbon VC Vinyl chloride VOC Volatile Organic Compound WBZ Water-bearing zone #### 1.0 INTRODUCTION The U.S. Environmental Protection Agency (EPA), under a Remedial Action Contract, has authorized EA Engineering, Science, and Technology, Inc., PBC (EA) No. EP-W-06-004, Task Order No. 0129-RARA-06NK to implement a focused Remedial Action (RA). The RA includes *in-situ bioremediation* (ISB) of the shallow water-bearing zone (WBZ) at the Jones Road Groundwater Plume Superfund Site (Site) located in the northwest portion of Harris County, Texas. EA executed the RA at the Site as defined in the September 2010 Record of Decision (EPA 2010) and in accordance with the RA Work Plan dated September 2015 (EA 2015). This technical memorandum (TM) summarizes the results of the sampling events associated with the ISB injections and evaluates the ISB performance. The initial TM was submitted in September 2016 (EA 2016) and this revised TM (Revision 01) incorporates hot spot injection conducted in January 2018 as well as post injection groundwater sampling
results. #### 1.1 SITE DESCRIPTION The Site is located in northwestern Harris County, Texas (Figure 1). The source of site contamination is the former Bell Dry Cleaners facility, located within the Cypress Shopping Center at 11600 Jones Road, approximately one-half mile north of the intersection of Jones Road and Farm to Market (FM) 1960, outside the city limits of northwest Houston, Texas. The Cypress Shopping Center was constructed in 1984, and the former Bell facility began dry cleaning operations sometime in 1988, using tetrachloroethylene, also known as perchloroethylene (PCE). The former Bell facility continued operating through May 2002 when the dry-cleaning operations were shut down. The hazardous substances present at the Site include PCE, and related daughter products trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and vinyl chloride (VC). The area around the Site is characterized by residential, commercial, and light industrial development. Residential development has been active since the 1960s, effectively eliminating wildlife habitat from the area. Jones Road is the principal north-south corridor through the area, and FM 1960 (approximately one-half mile to the south) provides a southwest-northeast corridor. Commercial development is dominant along Jones Road with residential and limited commercial development along the side streets. Cypress Creek is located approximately one mile to the northwest of the subject area, and White Oak Bayou is located approximately 3,500 feet (ft) to the south. #### 1.2 GEOLOGY AND HYDROLOGY The site is located within the West Gulf Coast Plain, which is part of the Coastal Plain physiographic province. The subsurface geology at the Site consists of Lissie Formation, which is underlain by the Willis Sand, which is underlain by the Goliad Formation and Fleming Formation. The principal water-bearing strata at the Site are the Chicot Aquifer, composed of the Lissie Formation and Willis Sand, and the Evangeline Aquifer comprised of the Goliad Sand and the Upper Fleming Formation. The Chicot Aquifer is above the Evangeline Aquifer. Water is encountered at two intervals within the Chicot Aquifer beneath the site: the shallow WBZ encountered at around 20 to 30 ft below ground surface (bgs), and the deep WBZ, encountered around 110 ft bgs. A 50-foot interval of dewatered Chicot Aquifer separates the bottom of the Lissie Clay, which perches the shallow WBZ from the deep WBZ. The shallow WBZ is comprised of a silty sand to sandy silt that is interbedded with sandy clay and clayey sand. The shallow aguifer is underlain by clay that is present from approximately 35 to 60 ft bgs. The groundwater flow within the shallow aquifer is toward the south at a gradient of 0.02 ft per foot. The deep WBZ is present in a poorly graded, very fine-grained sand that is interbedded with silty and sandy clay and clayey sand. The clay beds are generally less than 10 ft thick, but locally they retard the vertical movement of water. Every sand bed, therefore, has a different hydraulic head (Gabrysch 1984). #### 1.3 **ISB GOALS** The ISB goal is to reduce the site contaminants of concern in the shallow WBZ to the remedial cleanup goals as shown below: > Tetrachloroethene 5 microgram per liter (µg/L) Trichloroethene $5 \mu g/L$ cis 1,2-Dichloroethylene $70 \mu g/L$ trans 1,2Dichloroethylene $100 \mu g/L$ Vinyl Chloride $2 \mu g/L$ #### 2.0 **CHRONOLOGY OF EVENTS** The ISB was conducted in phases: (1) baseline sampling, (2) injection of EHC-L[®] into the shallow WBZ, (3) post-injection sampling, (4) hot spot injection of EHC-L[®] into the shallow WBZ, and (5) post hot spot injection sampling. #### 2.1 **BASELINE SAMPLING** Baseline sampling was conducted between 30 November and 3 December 2015. #### 2.2 INJECTION OF EHC-L® Initial injection of EHC- L^{\otimes} into the shallow WBZ was conducted over a 7-day period, 26 January 2016 – 1 February 2016. EHC- L^{\otimes} , which is a commercially available product was injected to the shallow groundwater to promote reductive dechlorination (RDC). #### 2.3 POST-INJECTION SAMPLING The following post-injection sampling events occurred after the initial full scale ISB injection: - 19 22 April 2016 Performed post-injection sampling event #1 was conducted and 15 monitoring wells were sampled. - 20 22 September 2016 Performed post-injection sampling event #2 was conducted and 14 monitoring wells were sampled. - 21 23 February 2017 Performed post-injection sampling event #3 was conducted and 14 monitoring wells were sampled. - 11 13 September 2017 Performed post-injection sampling event #4 was conducted and 14 monitoring wells were sampled. #### 2.4 HOT SPOT INJECTION OF EHC-L® Hot spot injection of EHC-L[®] into the shallow WBZ was conducted over a 7-day period, 21 March 2018 – 27 March 2018. #### 2.5 POST-INJECTION SAMPLING The following post-injection sampling events occurred after the hot spot ISB injection: - 14 17 May 2018 Performed post-injection sampling event #6 and 13 monitoring wells were sampled. - 5-7 November 2018 Performed post-injection sampling event #7 and 13 monitoring wells were sampled. #### 3.0 OVERVIEW OF REDUCTIVE DECHLORINATION PROCESS This section describes the chlorinated solvent biodegradation process, including RDC, enhanced monitored natural attenuation (MNA) through biostimulation and bioaugmentation for enhanced MNA. #### 3.1 REDUCTIVE DECHLORINATION Biodegradation reactions can occur under a wide range of environmental conditions. The dominant biodegradation mechanism in most groundwater environments for chlorinated contaminants is RDC, which is evidenced by the presence of PCE daughter products: TCE, DCE, and VC. Chlorinated solvents such as PCE, TCE, and trichloroethane are biodegraded by reductive processes. Naturally occurring, subsurface microorganisms possess the ability to biodegrade chlorinated volatile organic compounds (CVOCs) (e.g., PCE) to non-chlorinated, environmentally acceptable end products (e.g., ethene); carbon dioxide; water; and chloride (Major *et al:*. 1991 and 1995; Edwards and Cox 1997; AFCEE 2004). RDC occurs under anaerobic conditions and involves the sequential replacement of chlorine atoms on the alkene molecule with hydrogen atoms. Although thermodynamically favorable, most of the reactions involved in chlorinated aliphatic hydrocarbon reduction and oxidation do not proceed abiotically. Under reducing conditions, PCE serves as an electron acceptor and is dechlorinated to TCE, DCE, VC, and ethene. For this type of reaction to be thermodynamically favorable, the redox potential of the groundwater must be very low (i.e., negative oxidation-reduction potential [ORP]), thereby excluding the presence of dissolved oxygen (DO). PCE is the most susceptible to RDC because it is the most oxidized (i.e., chlorinated). Conversely, VC is the least susceptible to RDC because it is the least oxidized (i.e., chlorinated) of these compounds. As a result, the rate of RDC decreases as the degree of chlorination decreases (Vogel and McCarty 1985; Bouwer 1994). RDC has been demonstrated under nitrate- and iron-reducing conditions, but the most rapid biodegradation rates, affecting the widest range of chlorinated aliphatic hydrocarbons, occur under sulfate-reducing and methanogenic conditions (Bouwer 1994). Because chlorinated aliphatic hydrocarbon compounds are used as electron acceptors during RDC, there must be an appropriate source of carbon to act as an electron donor for microbial growth in order for this process to occur (Bouwer 1994). Efficacy of RDC via injection of EHC-L® at the site can typically be evaluated by determining: - The relative difficulty of distributing EHC-L® into the impacted shallow WBZ of the Chicot Aquifer (i.e., the hydraulic consideration); - The ability of the EHC-L® to create appropriate anaerobic conditions to facilitate enhanced RDC; - The ability of the EHC-L® to degrade PCE, TCE, and DCE through VC to the end products, ethene or ethane; - The rate at which degradation occurs; and - The amount of deleterious byproducts (e.g., VC accumulation and increased metals concentrations) generated. #### 3.2 ENHANCED ATTENUATION THROUGH BIOSTIMULATION An adequate supply of electron donors is required to promote the complete RDC of chloroethenes. Potential carbon sources include natural organic matter, fuel hydrocarbons, or other anthropogenic organic compounds. At sites where the existing supply of electron donors in groundwater is scarce, a remedy can be designed to deliver electron donors to the subsurface (a process referred to as biostimulation). Simple organic carbon compounds such as alcohols (e.g., methanol, ethanol); organic acids (provided by lactate and acetate); sugars (provided by molasses); or edible oils (e.g., soybean, canola, or olive oil) can serve as electron donors for the dechlorination reaction. Soluble electron donors such as organic acids and alcohols are often employed in remedial systems, for sites of moderate-to-high hydraulic conductivity, where rapid treatment is required. Low-solubility electron donors, such as emulsified soybean oil and oleate, are often used at sites where hydraulic conductivity is low and/or slower treatment is acceptable. The selection of an appropriate electron donor for a given site is a function of a variety of site-specific conditions, including hydraulic conductivity of the impacted formation, objectives for cleanup timeframe, contaminant and groundwater chemistry, potential for secondary impacts to drinking water quality, and cost. Electron donor consumption is dependent on the target CVOC concentration and the groundwater geochemistry (i.e., presence of naturally occurring electron acceptors such as oxygen, nitrate, and sulfate that will consume the donor). For sites that initially have aerobic conditions, the addition of an electron donor will first stimulate the growth of native aerobic bacteria, which consumes available oxygen. As
subsurface conditions become increasingly anoxic and reducing, the aerobic microbial populations decline while anaerobic microbial populations increase and begin to actively utilize available electron acceptors (i.e., nitrate, sulfate, ferric iron, manganese, and organic carbon) in order of greatest to least energy yield. An ORP of less than -100 millivolts (mV) and a DO concentration less than 0.5 milligrams per liter (mg/L), in combination with a decline in nitrate and sulfate concentrations, are indications that suitable subsurface conditions exist for RDC. The mass of amendment required for biostimulation is determined using the stoichiometric demand exerted by the known quantities of electron acceptors, either naturally occurring or in contaminants. The quantity of electron acceptors is calculated in electron equivalents, and then a safety factor is applied to quantify the amount of electron donor to be added during the biostimulation period. #### 4.0 ISB FIELD ACTIVITIES The ISB activities included baseline sampling, initial full-scale injection of the amendment, hot spot injection, and several post-injection sampling events following the individual injection events. EHC-L® is a cold-water soluble, food-grade formulation with a base composition of controlled-release organic carbon lecithin and an organo-iron compound that is specially designed for injection. It is applied through wells or hydraulic injection networks for the treatment of a wide range of groundwater contaminants. Manufacturer's information regarding EHC-L® is provided in Attachment A. Specifics regarding the ISB and field activities follows. #### 4.1 BASELINE SAMPLING Prior to injecting EHC-L[®], pre-injection sampling was conducted at 14 monitoring wells from 30 November 2015 – 3 December 2015. Each monitoring well was gauged using an oil/water interface probe prior to purging to document the depth of groundwater from top of the well casing. The depth to water values are shown in Table 1. Field parameters including DO, pH, ORP, temperature, conductivity, and turbidity were measured in the field. The field geochemistry results are shown in Table 2. Pre-injection groundwater samples were collected using the low-flow sampling technique. Samples were analyzed for dissolved metals by Contract Laboratory Program (CLP) ILMO5.3, volatile organic compounds (VOCs) by CLP OLM04.2, total organic carbon (TOC) by Standard Method (SM) 5310D-2000, dissolved gases by EPA Method RSK-175, ammonia by EPA Method 350.1, orthophosphate by SM4500 PE-1999, and nitrate-nitrite nitrogen by EPA Method 353.2. Groundwater samples were submitted to EPA Region 6 Laboratory for analysis of dissolved metals and VOCs. Groundwater samples were submitted to the Test America Laboratories, Inc. located in Houston, Texas for analysis of TOC, dissolved gasses, ammonia, orthophosphate, and nitrate-nitrite nitrogen. The pre-injection sampling results are provided in Tables 3 through 5 and shown on Figures 2 through 13. Analytical laboratory reports are included in Attachment B. Sampling field forms are included in Attachment C. #### 4.2 INJECTION PROCESS ISB was conducted in the shallow WBZ using EHC-L[®]. EHC-L[®] was applied through direct-push technology. On 22 January 2016, Vista GeoScience mobilized to the Site to begin pre-injection activities. EHC-L[®] injections occurred 25 January – 1 February 2016. Site cleanup and demobilization occurred 2 February 2016. Each batch mixture of EHC-L® and water was mixed on-site by Vista Geoscience per manufacturer instructions (Attachment A). The Vista GeoScience injection report describes the preparation of the injection solutions (Attachment D). The injection locations were separated into two different areas, A and B, as shown on Figure 14. Injection at area A targeted at the source area, and the concentration of the amendment mixture was higher than that in area B (approximately double in concentration). Amendment mixture was injected using direct-push technology via a 1.5-inch custom retractable injection tool and injections were monitored using digital flow and pressure gauges. Each location was started individually and with increased pressure in five pounds per square inch (psi) increments. Injection logs in the Vista GeoScience injection report (Attachment D) include individual flows, volumes and notes. A total of 6,489 gallons of EHC-L®, 3,344 pounds of EHC-L Dry Mix, 4,798 pounds of potassium bicarbonate, 108 liters of the inoculum, dehalococcoides (DHC), and 40,948 gallons of water was injection into 63 locations. During the injection, field data was collected by Vista GeoScience and EA. Vista GeoScience completed the injection logs and are included in Attachment D. EA kept field notes regarding the injection process and events and are included in Attachment E. Photographic documentation is included in Attachment F. State of Texas injection well reports are included in Attachment G. #### 4.3 POST-INJECTION SAMPLING Following the initial ISB injection the following four post-injection sampling events were conducted: - 19 22 April 2016 Performed post-injection sampling event #1 and 15 monitor wells were sampled. - 20 22 September 2016 Performed post-injection sampling event #2 and 14 monitoring wells were sampled. - 21 23 February 2017 Performed post-injection sampling event #3 and 14 monitoring wells were sampled. - 11 13 September 2017 Performed post-injection sampling event #4 and 14 monitoring wells were sampled. During each sampling event each monitoring well was gauged using an oil/water interface probe prior to purging to document the depth of groundwater from the top of the well casing. The depth to water values are shown in Table 1. DO, pH, ORP, temperature, conductivity, and turbidity were measured in the field. The field geochemistry results are shown in Table 2. Pre-injection groundwater samples were collected using the low-flow sampling technique, however, in instances where the water level was too low for low-flow sampling or recharge was slow to occur a bailer was used to collect a sample. Samples were analyzed for dissolved metals by EPA Method 6020A, mercury by EPA Method 7470A, VOCs by EPA Method 8260B, TOC by SM 5310D-2000, dissolved gases by EPA Method RSK-175, ammonia by EPA Method 350.1, orthophosphate by SM4500 PE-1999, and nitrate-nitrite nitrogen by EPA Method 353.2. Groundwater samples were submitted to the Test America Laboratories, Inc. located in Pittsburgh, PA for analysis of dissolved metals and mercury. Groundwater samples were submitted to the Test America Laboratories, Inc. located in Houston, Texas for analysis of VOCs, TOC, dissolved gasses, ammonia, orthophosphate, and nitrate-nitrite nitrogen. The post-injection sampling results are provided in Tables 3 through 5 and presented on Figures 2 through 13. Analytical laboratory reports are included in Attachment B. Sampling field forms are included in Attachment C. #### 4.4 HOT SPOT INJECTION PROCESS Results from post injection sampling showed that RDC was beginning to decline in the south of the source area, most specifically MW-20 and MW-22 as summarized in the following: #### Well MW-20 - The baseline concentration of PCE in MW-20 decreased over 97 percent a year after the ISB injection. However, as shown on Figure 23, by September 2017 PCE began trending upward. - TCE concentrations in MW-20 decreased by 96 percent over the first year after ISB, by September of 2017, TCE concentration flatten out (Figure 24). - The concentration of cis 1,2-DCE slightly increased after the ISB injection, by February 2017, the concentration decreased by 93 percent by February 2017 and started to flatten out by September 2017 (Figure 25). - The concentration of VC peaked after the ISB injection, decline in February 2017 and flatten out by September 2017 (Figure 27). - During the baseline sampling event, ethene and ethane were not detected in well MW-20 (Figure 28). Ethene concentrations increased post-injection, with the highest concentrations observed during September 2016 sampling events. Ethane levels increased slightly after the injection, peaking in February 2017. • After the ISB injection, methane concentrations increased substantially in MW-22, indicating increased methanogenesis but by September 2017 methane concentrations began trending downward (Figures 21 and 34). #### Well MW-22 - TCE concentrations in MW-22 decreased almost by 100 percent the first year after ISB, by September 2017 PCE began trending upward (Figure 24). - The concentration of cis 1,2-DCE slightly increased after the ISB injection, by February 2017, the concentration decreased by 94 percent by February 2017 and started to flatten out by September 2017, which may indicate DCE stall (Figure 25). - The concentration of VC peaked after the ISB injection, declined in February 2017 and flatten out by September 2017 (Figure 27). - During the baseline sampling event, ethene and ethane were not detected in well MW-20. Ethene concentrations increased post-injection, with the highest concentrations observed during September 2016 sampling event and began trending downward by February 2017 (Figure 28). The sample results indicated that RDC had slowed down approximately 19 months after the initial full-scale injection at wells MW-20 and MW-22, and the concentrations of PCE and TCE in these two wells remained elevated and daughter products, DCE and VC appeared to be stall. Therefore, a hot spot injection in this area was proposed. On 21 March 2018, Vista GeoScience mobilized to the Site to begin pre-injection activities. On 26 March 2018, the site was set up and injections were ready to commence, however, there were delivery issued with the hydrant meter, which cause activities to be delay for a day. Injection was initiated on 27 March 2018. Each batch mixture of EHC-L® and water was mixed on-site by Vista Geoscience per manufacturer instructions (Attachment A). The Vista GeoScience injection
report describes the preparation of the injection solutions (Attachment D). The hot spot injection was conducted in the same approach as in the initial full scale injection. The target injection interval was four feet approximately from 28 feet bgs to 32 feet bgs. The injection locations are shown on Figure 14, there were a total of ten locations. Amendment mixture was injected via a custom injection manifold, which allowed to injection up to four locations at a time. Each location varied in its flow rates and injection pressures, with the intention of keeping injection pressure below 60 - 70 psi to allow the product to flow into the formation without displacing the water table. Each location was started individually and with increased pressure in five psi increments. Injection logs in the Vista GeoScience injection report (Attachment D) include individual flows, volumes and notes. A total of 825 gallons of EHC-L®, 375 pounds of EHC-L Dry Mix, 550 pounds of potassium bicarbonate, and 3,600 gallons of water was inject into 10 locations. During the injection, field data was collected by Vista GeoScience and EA. Vista GeoScience completed the injection logs which are included in Attachment D. Field notes regarding the injection process are included in Attachment E. Photographic documentation is included in Attachment F. State of Texas injection well reports are included in Attachment G. #### 4.5 POST HOT SPOT INJECTION SAMPLING Two post-injection sampling were conducted after the hot spot injection; event number 5 (which is the first sampling event after the hot spot injection and the fifth event since the initial full scale injection) was performed between 14 and 27 May 2018 and 13 monitoring wells were sampled, and event number 6 was performed between 5 and 7 November 2018 and 14 monitoring wells were sampled. During each event monitoring wells were gauged using an oil/water interface probe prior to purging to document the depth of groundwater from the top of the well casing. The depth to water values are shown in Table 1. DO, pH, ORP, temperature, conductivity, and turbidity were measured in the field. The field geochemistry results are shown in Table 2. Preinjection groundwater samples were collected using the low-flow sampling technique, however, in instances where the water level was too low for low-flow sampling or recharge was slow to occur a bailer was used to collect a sample. Samples were analyzed for dissolved metals by EPA Method 6020A, mercury by EPA Method 7470A, VOCs by EPA Method 8260B, TOC by SM 5310D-2000, dissolved gases by EPA Method RSK-175, ammonia by EPA Method 350.1, orthophosphate by SM4500 PE-1999, and nitrate-nitrite nitrogen by EPA Method 353.2. Groundwater samples were submitted to the Test America Laboratories, Inc. located in Pittsburgh, PA for analysis of dissolved metals and mercury. Groundwater samples were submitted to the Test America Laboratories, Inc. located in Houston, Texas for analysis of VOCs, TOC, dissolved gasses, ammonia, orthophosphate, and nitrate-nitrite nitrogen. The post-injection sampling results are provided in Tables 3 through 5 and presented on Figures 2 through 13. Analytical laboratory reports are included in Attachment B. Sampling field forms are included in Attachment C. #### 5.0 ISB RESULTS #### 5.1 INJECTION PRESSURE AND FLOW RATE The injection rate ranged from <1-10 gallons per minute of EHC-L[®] mixture at 45-160 psi gauge pressure on the injection line. Injection mechanics are summarized in Table 6A and Table 6B. ## 5.2 CONCENTRATIONS OF CVOCS Analytical results of CVOCs are presented in Table 5 and Figures 2, 3, 4, 5, and 6 for PCE, TCE, cis DCE, trans DCE, and VC, respectively. ### 5.3 IN SITU BIOREMEDIATION INDICATORS ISB indicators including field parameter measurements and laboratory analytical data were used to determine if subsurface conditions were favorable for RDC. The field parameter measurements, including ORP, DO and pH, are summarized in Table 2, and ORP, DO, and pH trends are shown in Figures 15 through 17, respectively. Analytical results for MNA parameters are summarized in Table 4. Analytical results for dissolved metals are summarized in Table 3 and shown on Figures 11 through 13. Initial dissolved metal trends are shown in Figures 18 through 20. Methane and TOC results are shown on Figures 9 and 10, respectively. Methane and TOC trends are shown in Figures 21 and 22, respectively. Analytical results for chlorinated ethenes are summarized in Table 5 and shown on Figures 2 through 8. Chlorinated ethene trends are shown in Figures 23 through 29 and molar concentrations of chlorinated ethenes for wells with detections are presented in Figures 30 through 35. ## 6.0 PERFORMANCE EVALUATION This section evaluates performance of EHC-L® in the shallow WBZ based on the results of groundwater sample results. Both the ISB initial full-scale injection and hot spot injection were intended to promote a groundwater condition favorable for RDC. Groundwater reducing condition was assessed based on the geochemical analysis, i.e., ORP, dissolved metal concentrations, and DO. Evidence of dechlorination, i.e., concentration changes in PCE, TCE, cis DCE, and VC, and production of ethene, ethane and methane as RDC end products were also evaluated and presented in this section. #### 6.1 ISB INJECTION PERFORMANCE EVALUATION In order to evaluate the progress of enhanced RDC at the Site, results of baseline samples and post injection samples were compared. Analytical results are presented in Tables 2 through 5 and shown in Figures 2 through 35. A summary of the results is discussed in the following sections. ## **6.1.1** Geochemical Field Parameter Trends The favorability for RDC based on the pH, DO, ORP, methane, nitrates, and TOC is presented in Table 7. ## Total Organic Carbon As indicated in the technical guidance, In Situ Bioremediation of Chlorinated Ethene (ITRC 2008), TOC concentrations above 20 mg/L are considered favorable for RDC. Thus, in this report, TOC concentrations below 20 mg/L were considered low, between 20 mg/L and 200 mg/L moderate, and above 200 mg/L high. TOC concentrations are presented in Table 4 and Figure 10, and TOC concentration trends are presented in Figure 22. The baseline sampling event in December 2015 showed all sampled wells but MW-08 to have TOC concentration below the favorable range for RDC with concentrations under 20 mg/L. MW-08, which is located outside of the treatment areas had a moderately favorable TOC concentration of 35.8 mg/L. After the ISB injection, on the first sampling event all of the wells that are located in the treatment areas (MW-01, MW-02, MW-06, MW-20, and MW-22) showed favorable TOC concentration, except MW-20 and MW-22. TOC concentration in MW-01, MW-02, and MW-06 decreased over time but remained elevated for approximately six months before dropped to below the favorable level. Effect of the 2016 injection on TOC in MW-20 appeared delayed and TOC concentration increased approximately seven months after the injection; while TOC significantly increased in May 2018 after the hot spot injection near this well. Both injection events did not significantly raise the TOC level in MW-22 to a favorable level. Overall, as of the last sampling event, November 2018, all wells showed TOC concentrations below the favorable range for RDC. ### **ORP** ORP values below -50 mV were considered slightly reducing and indicative of conditions where RDC may occur (ITRC 2008). ORP values below -100 mV were considered reductive and indicative of conditions where RDC is likely to occur. ORP measurements of less than -50 mV (within the range at which RDC may occur) were observed in several wells pre-injection process and post injection process, with some exceptions. After the hot spot injection process, ORP measurement were favorable in all wells. ORP concentrations are presented in Table 2 and ORP concentration trends are presented in Figure 15. ### Dissolved oxygen Pre-injection, no DO measurements were below 0.5 mg/L, which is considered favorable to RDC (ITRC 2008). After injection, DO in the injection areas fluctuated but remained relatively low and favorable to RDC. DO concentrations are presented in Table 2 and DO concentration trends are presented in Figure 16. Revision: 01 Page 13 of 17 June 2019 # pH The pH measurements observer pre-injection, post injection and post hot spot injection were within the acceptable range of 5 to 9. The pH results are presented in Table 2 and pH trends are presented in Figure 17. ### **6.1.2** Reduction of PCE Concentrations The concentrations of PCE before the ISB injection ranged from 5,550 micrograms per liter (μ g/L) in the downgradient area (MW-20) to 14,500 μ g/L in the source area (MW-01). After the ISB injection in 2016, PCE concentrations decreased and had remained below the ISB goal, the maximum concentration level (MCL) of 5 μ g/L in the wells within the treatment areas with the exception of MW-02, MW-20, and MW-22. PCE concentration in MW-02 reduced to below the MCL after the 2016 injection but rebounded close to the pre-injection level in November 2018 (2 years and 10 months after the injection) (Table 5 and Figure 23). PCE concentration in MW-20 decreased approximately 97 percent one year after the initial full-scale injection, but it remained elevated and increased to 228 μ g/L in September 2017 (Table 5, and Figure 23). Thus, a hot spot injection was conducted in the area in March 2018, which significantly reduced the PCE concentration in MW-20 to 7 μ g/L in May 2018. However, the PCE slightly increase to 21 μ g/L in November 2018 at this well. Similar rebound was observed in MW-22, at which PCE concentration was non-detect from September 2016 to May 2018, and rebounded to 11 μ g/L in November 2018. PCE concentrations are presented in Table 5 and Figures 2, 23 and 30 - 35. Overall RDC by injection of EHC-L $^{\circledR}$ was highly
effective to reduce PCE concentration at the site. ## **6.1.3** Formation of Daughter Products Formation and subsequent dechlorination of PCE daughter products provide additional evidence of RDC occurring at the site. Concentrations of TCE before the initial injection ranged from 957 μ g/L in the downgradient well (MW-22) to 1,990 μ g/L in the source area (MW-01). After the ISB injection in 2016, TCE concentrations decreased to below the MCL of 5 μ g/L in the source area (MW-01 and MW-02) and had been below the MCL until November 2018 (2 years and 10 months after the initial injection), when TCE rebounded considerably at MW-02 (Table 5). In the downgradient well MW-20, TCE concentration decreased approximately 96 percent one year after the initial full-scale injection, but it stalled at a level of 60 μ g/L in 2017 (Table 5). The hot spot injection in March 2018, however reduced the TCE concentration at MW-20 to 8.9 μ g/L based on the May 2018 sample results. The hot spot injection did not provide sustaining reduction and TCE concentration in MW-20 rebounded to 71.3 μ g/L 8 months after hot spot injection. During RDC, all three isomers of DCE (cis 1,2-DCE, trans 1,2-DCE and 1,1-DCE) can be produced; however, cis 1,2-DCE is the more commonly produced isomer (EPA 1998). After the initial full scale injection, the concentration of cis 1,2-DCE increased around the source area at well MW-01 and then reduced more than 99 percent by September 2016, after which the concentration of cis 1,2-DCE gradually increased to 1,230 µg/L in November 2018 at MW-01. The concentration of cis 1,2-DCE at the other source well, MW-02 however fluctuated and went back to the pre-injection level in November 2018 (Table 5 and Figure 25). Increase in cis 1,2-DCE in the source area can be partially resulted from dechlorination of its parent compounds, PCE and TCE. On the other hand, concentrations of cis 1,2-DCE slightly increased after the initial full-scale injection and began to trend downward at downgradient wells, MW-20 and MW-22. After the hot spot injection these concentrations continued to decrease. Thus, the hot spot injection appears to be effective to reduce the DCE concentration. cis 1,2-DCE and trans 1,2-DCE concentrations are presented in Table 5 and Figures 4-5, 25-26 and 30-35. Concentration of VC at source well MW-01 changed in a similar fashion as cis 1,2-DCE and it reduced more than 99 percent by February 2017 and rebounded back to the pre-injection level in November 2018. The other source well, MW-02 also behaved similarly in VC concentration to cis 1,2-DCE concentration and VC concentration had accumulated to a level in November 2018 much higher than the pre-injection level. In downgradient wells, MW-20 and MW-22 however, VC concentration increased after the initial injection and stalled and decreased due to the hot spot injection (Figure 27). VC concentrations are presented in Table 5 and Figures 6, 27, and 30-35. The presence of ethene, and ethane indicates the RDC process reached completion. In all wells at the treated areas (MW-01, MW-02, MW-06, MW-20 and MW22) accumulation of ethene, ethane, and methane was observed as showed in Figure 28, Figure 29, and Figure 21, respectively. #### 6.1.4 **Formation of Deleterious Byproducts** Arsenic, iron, and manganese may become dissolved under reducing condition resulting from the injection. After the first and the hot spot injections, dissolved concentrations of iron, manganese and arsenic each increased in the wells in the treated areas. Iron and manganese concentrations increased in wells, MW-01, MW-02, MW-06, MW-20, MW-21 and MW-22, above the MCLs of 300 µg/L and 50 µg/L, respectively. By November 2018, the iron and manganese concentrations still remained elevated and higher than the pre-injection levels (Table 3, and Figure 19 for dissolved iron and Figure 20 for dissolved manganese concentrations). The pre-injection dissolved arsenic concentrations were below the MCL in all monitoring wells other than MW-01 and MW-04. After both injections, the concentrations of dissolved arsenic increased in the wells in the treated areas and remained above the MCL of 10 μ g/L in November 2018 (Table 3 and Figure 18). ## 7.0 SUMMARY AND CONCLUSIONS Based on the sample results collected before and after ISB injections, conclusions are summarized in this section. - The ISB injection effectively reduced PCE concentrations in the source area to a 99 percent reduction and remained effective in the source area for approximately two years and ten months before rebound took place (Figure 23). MW-02 PCE concentration rebounded to the pre-injection level and the significant rebound in this well may be due to the lower dosing than that in MW-01. - The ISB injections also effectively reduced PCE concentration in the downgradient area to a 97 percent reduction (i.e. MW-20). The reduction of PCE was not as effective as that in the source area because of lower dosing of the reagents in the downgradient area. The hot spot injection in the downgradient area however, reduced the PCE concentration further. Rebound also took place in November 2018 as in the source area (Figure 23). - As of November 2018, MW-02, MW-20, and MW-22 PCE concentration was above the MCL of 5 μg/L. - TCE concentration reduction in the treated areas appear very similar to the PCE concentration reduction. TCE rebound also took place two years and ten months after the initial injection in 2016. MW-20 TCE remained elevated even after the hot spot injection. As of November 2018, only MW-02 and MW-20 TCE concentration was above the MCL of 5 µg/L. - Daughter products, cis 1,2-DCE and VC were generated considerably in the source area (MW-01 and MW-02) and remained elevated in the last sampling event, November 2018. cis 1,2-DCE and VC concentrations were at or above the pre-injection level in MW-02 and reduced approximately 81 percent and 26 percent, respectively in MW-01 by November 2018. - cis 1,2-DCE and VC concentrations in the downgradient area (MW-20 and MW-22) in general stalled and remained elevated. The hot spot injection which only treated downgradient area, reduced the concentrations of cis 1,2-DCE and VC in the area significantly. Overall, downgradient wells DCE concentration reduced approximately 96-99 percent, and VC concentration reduced approximately 63-91 percent. - As of November 2018, cis 1,2-DCE concentration was still above the MCL of 70 μg/L in MW-01, MW-02, and MW-20; and VC concentration above the MCL of 2 μg/L in all wells within the treated areas (MW-01, MW-02, MW-06, MW-20, and MW-22). - ISB injections promoted reducing condition in the treated area, therefore dissolved metals, iron, manganese, and arsenic concentrations increased and remained elevated above pre-injection level. - Significant amounts of ethane, ethene and methane were generated, which are the end products from the enhanced biodegradation and reduction of the chlorinated compounds by the ISB injections. It should note that installation of a soil vapor extraction (SVE) system is ongoing during the preparation of this report. The SVE is designed to remediate the shallow soils in the source area and will be operated through November 2020. Future injection of any reagents in the source area may interfere the SVE operations, therefore additional ISB injection is not recommended during SVE operations. In addition, because of the shallow depth of the groundwater at the site, SVE operations may likely extract groundwater from the shallow WBZ, impacting concentrations of the chlorinated compounds. Therefore, additional sampling should be conducted after SVE completes its operation to evaluate the groundwater condition before any additional ISB injection. ## 8.0 REFERENCES - Air Force Center for Environmental Excellence (AFCEE). 2004. Principles and Practices of Enhanced Anaerobic Biodegradation of Chlorinated Solvents. - Bouwer, E.J. 1994. Bioremediation of chlorinated solvents using alternate electron acceptors, In *Handbook of Bioremediation:* (Norris, R.D., Hinchee, R.E., Brown, R., McCarty, P.L,Semprini, L., Wilson, J.T., Kampbell, D.H., Reinhard, M., Bouwer, E.J., Borden, R.C.,Vogel, T.M., Thomas, J.M., and Ward, C.H., Eds.), Lewis Publishers, Boca Raton, FL,p.149-175. - EA Engineering, Science, and Technology, Inc. (EA). 2015. Remedial Action Work Plan for Jones Road Groundwater Plume Superfund Site, Harris County, Texas. Revision 00. August. - EA. 2016. Technical Memorandum on Results of Limited ISB, Jones Road Groundwater Plume Superfund Site, Harris County, Texas. Revision 00. September. - Edwards, E., and E. Cox. 1997. Field and laboratory studies of sequential anaerobic-aerobic chlorinated solvent biodegradation, in *Proceedings of Fourth International Symposium on In Situ and On-Site Bioremediation Symposium*. Volume 3. Battelle Press, Columbus, OH. - Gabrysch, R. K. 1984. Case History No. 9.12. The Houston Galveston Region, Texas, USA. *U.S. Geological Survey Guidebook to Studies Of Land Subsidence Due To Ground Water Withdrawal*. Prepared for the International Hydrogeologic Programme, Working Group 8.4. - Interstate Technology Regulatory Council (ITRC). 2008. *In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones*. June - Major, D., E. Cox, E. Edwards, and P. Hare. 1995. Intrinsic dechlorination of trichloroethene to ethene in a bedrock aquifer, in *Intrinsic Bioremediation* (Hinchee, Wilson, Downey, eds.)., Battelle Press, Columbus, OH, pp. 197-204. - Major D., W.W. Hodgins, and B.J. Butler. 1991. Field and laboratory evidence of in situ biotransformation of tetrachloroethene to ethene and ethane at a chemical transfer facility in North Toronto, in On site Bioreclamation (Hinchee and Olfenbuttel, eds.). Butterworth-Heinemann, Boston, MA. pp. 147-171. - U.S. Environmental Protection Agency (EPA). 1998. *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater.
Office of Research and Development, Publication EPA/600/R-98/128.* September. - EPA. 2010. *Record of Decision*, Jones Road Groundwater Plume Superfund Site. Harris County, Texas. September. - Vogel, T.M., and McCarty, P.L. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions, in *Applied. Environmental Microbiology*, 49(5):1080-1083.2 JUNTED STATES Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 2 Tetrachloroethene Results Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 3 Trichloroethene Results UNITED STATES Image Source: GoogleEarth Pro, 2016 Remedial Action Jones Road Ground Water Plume cis-1,2-Dichloroethene Results Houston, Harris County, Texas Figure 5 trans-1,2-Dichloroethene Results Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 6 Vinyl Chloride Results Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 7 **Ethene Results** THITTED STATES TO THE TOTAL Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 8 Ethane Results -03-06 R:\Federa\\EPA\RAC I\\0070-Jones Road RD\GIS\\MXDs\201902\JonesPCE201902.mxd EA-D THE STATES TO TH Image Source: GoogleEarth Pro, 2016 Figure 9 Methane Results Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Jones Road Ground Water Plume Houston, Harris County, Texas Remedial Action Figure 10 Total Organic Carbon Results Total Organic Carbon THE STATE OF S Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 11 Dissolved Arsenic Results SNAP TO STATES Image Source: GoogleEarth Pro, 2016 Jones Road Ground Water Plume Houston, Harris County, Texas Remedial Action Figure 12 Dissolved Iron Results Remedial Action Jones Road Ground Water Plume Houston, Harris County, Texas Figure 13 Dissolved Manganese Results Figure 14 Product Injection Locations # TABLE 1. GAUGING DATA | Wall | Northing | Easting | Top of
Casing
Elevation
(ft amsl) | Total Depth ¹ | Screen
Interval | Date
Gauged | Depth To
Water
(ft btoc) | Ground
Water
Elevation
(ft amsl) | |-------------|-------------|------------|--|--------------------------|--------------------|-------------------------|--------------------------------|---| | Well MW-01 | 13905889.22 | 3050076.23 | 124.08 | (ft bgs) | (ft bgs) | 11/23/2015 | 25.16 | 98.92 | | IVI VV -U I | 13903889.22 | 3030070.23 | 124.06 | 33 | 2.5-55 | | | | | | | | | | | 4/19/2016 | 21.40 | 102.68 | | | | | | | | 2/23/2017 | 22.10 | 101.98 | |) (IV) 02 | 12005002 41 | 205002655 | 124.40 | 2.5 | 2.5.25 | 5/31/2017 | 25.02 | 99.06 | | MW-02 | 13905983.41 | 3050036.75 | 124.40 | 35 | 2.5-35 | 11/23/2015 | 23.21 | 101.19 | | | | | | | | 4/19/2016 | 19.01 | 105.39 | | | | | | | | 2/23/2017
5/31/2017 | 19.13
23.17 | 105.27
101.23 | | MW-03 | 13906003.82 | 3050169.30 | 123.83 | 35 | 2.5-35 | 11/23/2015 | 22.21 | 101.23 | | 1V1 VV -03 | 13900003.82 | 3030109.30 | 123.63 | 33 | 2.5-55 | 4/19/2016 | 17.01 | 101.02 | | | | | | | | 2/23/2017 | 17.21 | 106.62 | | | | | | | | 5/31/2017 | 22.26 | 101.57 | | MW-04 | 13906043.95 | 3050160.69 | 124.18 | 35 | 2-35 | 11/23/2015 | 21.39 | 102.79 | | | 10,000.000 | 202010000 | 1210 | | 2 55 | 4/19/2016 | 13.10 | 111.08 | | | | | | | | 2/23/2017 | 14.61 | 111.08 | | | | | | | | 5/31/2017 | 21.98 | 111.08 | | MW-05 | 13906012.39 | 3050268.19 | 124.58 | 35 | 2-35 | 11/23/2015 | 22.32 | 102.26 | | | | | | | | 4/19/2016 | 16.80 | 107.78 | | | | | | | | 2/23/2017 | 17.14 | 107.44 | | | | | | | | 5/31/2017 | 22.88 | 101.70 | | MW-06 | 13905739.50 | 3050053.00 | 124.09 | 35 | 2-35 | 11/23/2015 | 34.01 | 90.08 | | | | | | | | 4/19/2016 | 32.27 | 91.82 | | | | | | | | 2/23/2017 | 32.80 | 91.29 | | | | | | | | 5/31/2017 | 34.83 | 89.26 | | MW-07 | 13905616.50 | 3050080.20 | 124.16 | 35 | 20-35 | 11/23/2015 | 28.68 | 95.48 | | | | | | | | 4/19/2016 | 27.45 | 96.71 | | | | | | | | 2/23/2017 | 27.59 | 96.57 | | | | | | | | 5/31/2017 | 29.36 | 94.80 | | MW-08 | 13906214.00 | 3050078.00 | 124.82 | 36.5 | 20.5-35.5 | 11/23/2015 | 20.14 | 104.68 | | | | | | | | 4/19/2016 | 15.25 | 109.57 | | | | | | | | 2/23/2017 | 15.86 | 108.96 | | | | | | | | 5/31/2017 | 20.24 | 104.58 | | MW-09 | 13905928.70 | 3049810.50 | 127.23 | 35 | 20-35 | 11/23/2015 | 27.28 | 99.95 | | | | | | | | 4/19/2016 | 24.40 | 102.83 | | | | | | | | 2/23/2017 | 20.41 | 106.82 | | MW-20 | 13905800.50 | 3050061.56 | 124.50 | 32 | 25-30 | 5/31/2017 | 24.87 | 102.36 | | IVI VV -20 | 13903800.30 | 3030001.30 | 124.30 | 32 | 23-30 | 11/23/2015
4/19/2016 | 27.92
26.5 | 96.58
98.00 | | | | | | | | 2/23/2017 | 25.74 | 98.00 | | | | | | | | 5/31/2017 | 27.71 | 98.00 | | MW-21 | 13905748.87 | 3050209.53 | 124.16 | 32 | 25.3 | 11/23/2015 | 27.61 | 96.55 | | 1,11, 21 | 10,007 | 5050207.55 | 127.10 | 52 | 23.3 | 4/19/2016 | 25.38 | 98.78 | | | | | | | | 2/23/2017 | 24.96 | 98.78 | | | | | | | | 5/31/2017 | 27.46 | 98.78 | | MW-22 | 13905712.04 | 3050057.03 | 124.73 | 55 | 48-53 | 11/23/2015 | 49.52 | 75.21 | | | | | | | | 4/19/2016 | 48.19 | 76.54 | | | | | | | | 2/23/2017 | 45.81 | 78.92 | | | | | | | | 5/31/2017 | 48.1 | 76.63 | | MW-23 | 13905621.51 | 3050066.96 | 124.60 | 55 | 48-53 | 11/23/2015 | 46.67 | 77.93 | | | | | | | | 4/19/2016 | 45.31 | 79.29 | | | | | | | | 2/23/2017 | 44.57 | 79.29 | | | | | | | <u>L</u> | 5/31/2017 | 45.01 | 79.29 | | MW-24 | 13905359.53 | 3050071.34 | 124.37 | 55 | 48-53 | 11/23/2015 | 20.37 | 104.00 | | | | | | | | 4/19/2016 | 16.39 | 107.98 | | | | | | | | 2/23/2017 | 18.18 | 107.98 | | | | | | | | 5/31/2017 | 21.48 | 107.98 | | MW-25 | 13905668.39 | 3049917.71 | 124.38 | 30 | 23-28 | 11/23/2015 | 29.41 | 94.97 | | | | | | | | 4/19/2016 | 28.15 | 96.23 | | | | | | | | 2/23/2017 | 29.45 | 94.93 | | NOTES: | | | | | | 5/31/2017 | 29.43 | 94.95 | # NOTES: amsl = Above mean sea level. bgs = Below ground surface. btoc = Below top of casing. ft = Feet. ¹ Total depth for wells MW-1 through MW-09 is the total depth of the borehole, which may or may not correspond to the total depth of the well. Total depth for all other wells represents total depth of the well. TABLE 2. GROUND WATER FIELD GEOCHEMISTRY RESULTS | Sample Location/Well ID | Sample Date | рН | DO
(m c/L) | ORP | Temperature | Conductivity | - | |-------------------------|---|--|---|--|--|--|--| | | 3-Dec-15 | 6.60 | (mg/L)
0.60 | (mV)
21.6 | (°C)
25.5 | (μS/cm)
934 | (NTU)
58.9 | | | 22-Apr-16 | | | | To Take Readings | | 450 | | MW-01 | 20-Sep-16
23-Feb-17 | 6.28
6.47 | 1.4
0.28 | -119.8
-117.4 | 26.8
26.8 | 2,426
1,730 | 46.0
11.2 | | 1,1,1, 0,1 | 13-Sep-17 | 6.51 | 2.90 | -127.4 | 28.1 | 2,756 | 20.6 | | | 24-May-18 | 6.59 | 1.05 | -141.3 | 26.1 | 1,365 | 3.7 | | | 7-Nov-18
3-Dec-15 | 6.60 | 0.23
2.63 | -139.0
83.7 | 25.5
23.7 | 1,563
878 | 7.6
104 | | | 22-Apr-16 | 6.11 | | -98.2 | 25.2 | 680 | 53.0 | | MW 02 | 20-Sep-16 | 4.32 | 3.6 | -61.0
-99.0 | 25.7
24.0 | 1,557 | 82.6 | | MW-02 | 23-Feb-17
13-Sep-17 | 6.57
6.89 | 0.24
0.27 | -99.0
-99.9 | 26.0 | 1,150
1,218 | 6.2 | | | 23-May-18 | 6.77 | 0.93 | -192.7 | 24.7 | 1,032 | 22.3 | | | 7-Nov-18
3-Dec-15 | 6.84 | 0.35
0.99 | -13.6
84.2 | 23.6
21.2 | 1,551
1,014 | 19.9
49.9 | | | 22-Apr-16 | 6.65 | 3.82 | 92.1 | 22.2 | 940 | 62.0 | | | 21-Sep-16 | 4.88 | 2.6 | 193.6 | 22.6 | 759 | 6.4 | | MW-03 | 22-Feb-17
12-Sep-17 | 6.79
6.67 | 0.14 | -37.2
69.0 | 21.9
25.2 | 590
1,103 | 3.3 | | | 22-May-18 | 6.73 | 1.71 | 42.5 | 23.2 | 536 | 32.3 | | | 6-Nov-18 | 6.64 | 0.60 | -46.1 | 22.4 | 918 | 38.0 | | | 2-Dec-15
21-Apr-16 | 6.74 | 0.67 | -191.6
-42.0 | 21.8 | 1,478
980 | 74.7
45.2 | | | 22-Sep-16 | 4.76 | 1.9 | 230.5 | 21.5 | 1,499 | 6.2 | | MW-04 | 22-Feb-17 | 6.82 | 0.16 | 9.6 | 22.1 23.9 | 870 | 18.7 | | | 12-Sep-17
23-May-18 | 6.46 | 0.14
11.10 | -79.6
-201.5 | 22.6 | 1,586
1,836 | 19.4
16.2 | | | 6-Nov-18 | 6.68 | 0.19 | -162.1 | 21.7 | 2,436 | 17.3 | | | 2-Dec-15 | 6.60 | 0.72 | -95.7 | 22.7 | 1,075 | 148 | | | 21-Apr-16
21-Sep-16 | 7.20
4.29 | 2.55 | 168.4
638.8 | 22.1 | 376
1,027 | 52.3
454 | | MW-05 | 22-Feb-17 | 6.69 | 2.3 | 91.9 | 23.2 | 900 | 9.8 | | | 13-Sep-17
21-May-18 | 6.44 | 0.9 | 83.7
-10.8 | 24.1
24.0 | 1,936
1,309 | 79.1
699.0 | | | 5-Nov-18 | 6.53 | 1.82 | -9.8 | 21.6 | 1,309 | 699.0 | | | 1-Dec-15 | | N | | To Take Readings | | | | | 21-Apr-16
21-Sep-16 | 6.11 | 0.33 | -0.4 | 25.4 | 580 | 189 | | MW-06 | 21-Feb-17 | | | | | | | | | 11-Sep-17 | | N | ot Enough Water | To Take Readings | | | | | 22-May-18
6-Nov-18 | | | | | | | | |
1-Dec-15 | | | | | | | | | 20-Apr-16 | | | | | | | | MW-07 | 21-Sep-16
20-Feb-17 | | Casing D | amaged: Could N | Not Accommodate A | Pump | | | | 11-Sep-17 | | 8 | 8 , | | 1 | | | | 22-May-18
5-Nov-18 | | | | | | | | | 2-Dec-15 | 7.07 | 0.56 | -137.5 | 23.4 | 494 | 109 | | | 19-Apr-16 | 6.71 | 0.01 | 6.2 | 24.0 | 780 | 4.0 | | MW-08 | 20-Sep-16
21-Feb-17 | 3.64
6.63 | 1.6
0.20 | 622.2
156.3 | 24.6
23.6 | 840
850 | 32.0
7.7 | | 11111 00 | 13-Sep-17 | 6.82 | 0.37 | 87.1 | 24.3 | 1,459 | 40.4 | | | 24-May-18 | | | | woodpile - Inaccessib
woodpile - Inaccessib | | | | | 5-Nov-18
2-Dec-15 | 6.65 | 1.60 | 143.6 | 22.1 | 712 | 184 | | | 21-Apr-16 | 6.70 | 1.53 | 196.7 | 23.0 | 740 | 68.7 | | MW-09 | 22-Sep-16
23-Feb-17 | 3.80
6.59 | 2.5
0.59 | 599.8
75.4 | 24.0
22.9 | 1,156
1,070 | 66.5
3.8 | | IVI W -09 | 12-Sep-17 | 6.66 | 0.53 | -18.2 | 27.5 | 1,674 | 92.4 | | | 24-May-18 | 6.59 | 0.60 | 9.0 | 24.1 | 1,042 | 56.0 | | | 5-Nov-18
2-Dec-15 | 6.45 | 0.29 | -92.2 | 22.6
To Take Readings | 1,235 | | | | 22-Apr-16 | 6.31 | 0.00 | 40.8 | 27.5 | 1,120 | 77.6 | | MW-20 | 22-Sep-16 | 5.67 | 1.4 | -8.0 | 26.9 | 2,166 | 278 | | | 21-Feb-17
13-Sep-17 | 6.29 | 0.12 | -37.9
-70.2 | 27.2
29.2 | 1,930
2,989 | 13.1
68.2 | | | 24-May-18 | | N | ot Enough Water | To Take Readings | | 1 | | | 1-Dec-15
22-Apr-16 | 6.52
6.55 | 0.80 | 202.1
193.0 | 26.2
25.5 | 1,154
990 | 9.87 | | | 22-Apr-16
22-Sep-16 | 6.16 | 1.2 | 426.2 | 25.1 | 1,052 | 9.87 | | MW-21 | 22-Feb-17 | 6.65 | 0.13 | 49.8
30.1 | 24.8 | 1,010 | 1.4 | | | 13-Sep-17 | (20 | 0.19 | 20.1 | 28.6 | 1,837 | 12.3 | | I | _ | 6.39 | | | | 1 / | | | | 23-May-18
7-Nov-18 | 6.65 | | | To Take Readings 24.76 | 1111.00 | 2.16 | | | 23-May-18
7-Nov-18
30-Nov-15 | 6.65
6.40 | 0.18
0.77 | ot Enough Water
-52.60
139.0 | To Take Readings
24.76
24.6 | 1111.00 | | | | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16 | 6.65 | 0.18
0.77
0.04 | ot Enough Water
-52.60
139.0
-14.7 | To Take Readings
24.76
24.6
25.9 | 1111.00 | 2.16

158 | | MW-22 | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17 | 6.65
6.40
6.21 | 0.18
0.77
0.04 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t | To Take Readings 24.76 24.6 25.9 to collect sample. | 1111.00
1,091
1,180 | 158 | | MW-22 | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17 | 6.65
6.40 | 0.18
0.77
0.04 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 | 24.76
24.6
25.9
26.60 | 1111.00 | | | MW-22 | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17 | 6.65
6.40
6.21 | 0.18
0.77
0.04 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 | To Take Readings 24.76 24.6 25.9 to collect sample. | 1111.00
1,091
1,180 | 158 | | MW-22 | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16 | 6.65
6.40
6.21
6.38
6.79
6.93 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 | To Take Readings 24.76 24.6 25.9 to collect sample. 26.60 To Take Readings 23.2 25.6 | 1111.00
1,091
1,180
2787.00
634
630 | 76.71
158 | | | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16
21-Sep-16 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 | 24.76 24.6 25.9 26.60 To Take Readings 23.2 25.6 25.3 | 1111.00
1,091
1,180
2787.00
634
630
680 | 76.71
158
76.71
158
 | | MW-22
MW-23 | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16 | 6.65
6.40
6.21
6.38
6.79
6.93 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 | To Take Readings 24.76 24.6 25.9 to collect sample. 26.60 To Take Readings 23.2 25.6 | 1111.00
1,091
1,180
2787.00
634
630 | 76.71
158 | | | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17
12-Sep-17
21-May-18 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 0.48 0.70 0.76 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 | 24.76 24.6 25.9 co collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 | 1111.00
1,091
1,180
2787.00
634
630
680
680
1,194
686 | 76.71
158
76.71
158

182
20.4
678.0
95.0 | | | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17
12-Sep-17
21-May-18
5-Nov-18 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 0.48 0.70 0.76 0.64 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 | To Take Readings 24.76 24.6 25.9 to collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 | 1111.00
1,091
1,180
2787.00
634
630
680
680
1,194
686
817 | 76.71
158
76.71
158

182
20.4
678.0
95.0 | | | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17
12-Sep-17
21-May-18
5-Nov-18
1-Dec-15
20-Apr-16 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 0.48 0.70 0.76 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 | 24.76 24.6 25.9 co collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 | 1111.00
1,091
1,180
2787.00
634
630
680
680
1,194
686 | 76.71
158
76.71
158

182
20.4
678.0
95.0 | | MW-23 | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17
12-Sep-17
21-May-18
5-Nov-18
1-Dec-15
20-Apr-16
21-Sep-16 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91
7.19
7.04
4.82 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 0.48 0.70 0.76 0.64 1.03 0.20 2.1 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 214.6 137.9 644.3 | To Take Readings 24.76 24.6 25.9 To collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 23.3 24.3 25.3 | 1111.00
1,091
1,180
2787.00
634
630
680
680
1,194
686
817
521
540
559 | 76.71
158
76.71
158

182
20.4
678.0
95.0

33.8
79.4
52.6 | | | 23-May-18 7-Nov-18 30-Nov-15 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 1-Dec-15 20-Apr-16 21-Sep-16 20-Feb-17 12-Sep-17 21-May-18 5-Nov-18 1-Dec-15 20-Apr-16 21-Sep-16 21-Feb-17 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91
7.19
7.04
4.82
7.04 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 0.48 0.70 0.76 0.64 1.03 0.20 2.1 0.83 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 214.6 137.9 644.3 131.5 | To Take Readings 24.76 24.6 25.9 To collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 23.3 24.3 25.3 25.3 | 1111.00
1,091
1,180
2787.00
2787.00
634
630
680
680
1,194
686
817
521
540
559
570 | 76.71 158 76.71 158 182 20.4 678.0 95.0 33.8 79.4 52.6 14.3 | | MW-23 | 23-May-18
7-Nov-18
30-Nov-15
21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17
12-Sep-17
21-May-18
5-Nov-18
1-Dec-15
20-Apr-16
21-Sep-16 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91
7.19
7.04
4.82 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 0.48 0.70 0.76 0.64 1.03 0.20 2.1 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 214.6 137.9 644.3 | To Take Readings 24.76 24.6 25.9 To collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 23.3 24.3 25.3 | 1111.00
1,091
1,180
2787.00
634
630
680
680
1,194
686
817
521
540
559 | 76.71
158
76.71
158

182
20.4
678.0
95.0

33.8
79.4
52.6 | | MW-23 | 23-May-18 7-Nov-18 30-Nov-15 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 1-Dec-15 20-Apr-16 21-Sep-16 20-Feb-17 12-Sep-17 21-May-18 5-Nov-18 1-Dec-15 20-Apr-16 21-Sep-16 21-Sep-17 21-May-18 5-Nov-18 1-Dec-15 20-Apr-16 21-Sep-17 21-May-18 7-Nov-18 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91
7.19
7.04
4.82
7.04
7.32 | N 0.18 0.77 0.04 3.50 N 1.29 0.38 1.9 0.48 0.70 0.76 0.64 1.03 0.20 2.1 0.83 0.59 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 214.6 137.9 644.3 131.5 10.0 | To Take Readings 24.76 24.6 25.9 To collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 23.3 24.3 25.3 25.1 25.8 |
1111.00
1,091
1,180
2787.00
634
630
680
680
1,194
686
817
521
540
559
570
933 | 76.71 158 76.71 158 182 20.4 678.0 95.0 33.8 79.4 52.6 14.3 27.2 | | MW-23 | 23-May-18 7-Nov-18 30-Nov-15 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 1-Dec-15 20-Apr-16 21-Sep-16 20-Feb-17 12-Sep-17 21-May-18 5-Nov-18 1-Dec-15 20-Apr-16 21-Sep-16 21-Sep-17 21-May-18 5-Nov-18 1-Dec-15 20-Apr-16 21-Sep-17 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91
7.19
7.04
4.82
7.04
7.32
7.00 | N 0.18 0.77 0.04 0.04 3.50 N 1.29 0.38 0.70 0.76 0.64 1.03 0.20 2.1 0.83 0.59 0.87 0.38 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 214.6 137.9 644.3 131.5 10.0 -48.6 -91.3 | To Take Readings 24.76 24.6 25.9 To collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 23.3 24.3 25.3 25.1 25.8 25.4 24.6 | 1111.00
1,091
1,180
2787.00
2787.00
634
630
680
680
1,194
686
817
521
540
559
570
933
598 | 76.71 158 76.71 158 182 20.4 678.0 95.0 33.8 79.4 52.6 14.3 27.2 36.8 | | MW-23 | 23-May-18 7-Nov-18 30-Nov-15 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 1-Dec-15 20-Apr-16 21-Sep-17 12-Sep-17 21-May-18 5-Nov-18 1-Dec-15 20-Apr-16 21-Sep-16 21-Sep-17 21-May-18 5-Nov-18 1-Dec-15 20-Apr-16 21-Sep-17 12-Sep-17 12-Sep-17 12-Sep-17 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91
7.19
7.04
4.82
7.04
7.32
7.00 | N 0.18 0.77 0.04 0.04 3.50 N 1.29 0.38 0.70 0.76 0.64 1.03 0.20 2.1 0.83 0.59 0.87 0.38 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 214.6 137.9 644.3 131.5 10.0 -48.6 -91.3 | To Take Readings 24.76 24.6 25.9 To collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 23.3 24.3 25.3 25.1 25.8 25.4 | 1111.00
1,091
1,180
2787.00
2787.00
634
630
680
680
1,194
686
817
521
540
559
570
933
598 | 76.71 158 76.71 158 182 20.4 678.0 95.0 33.8 79.4 52.6 14.3 27.2 36.8 | | MW-23
MW-24 | 23-May-18 7-Nov-18 30-Nov-15 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 1-Dec-15 20-Apr-16 20-Feb-17 12-Sep-17 21-May-18 1-Dec-15 20-Apr-16 21-Sep-17 21-May-18 1-Dec-15 20-Apr-16 21-Sep-17 21-May-18 7-Nov-18 1-Dec-15 20-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 | 6.65
6.40
6.21
6.38
6.79
6.93
4.67
6.94
7.04
6.78
6.91
7.19
7.04
4.82
7.04
7.32
7.00 | N 0.18 0.77 0.04 0.04 3.50 N 1.29 0.38 0.70 0.76 0.64 1.03 0.20 2.1 0.83 0.59 0.87 0.38 | ot Enough Water -52.60 139.0 -14.7 Bailer was used t -20.80 ot Enough Water -1,860.7 144.0 616.8 12.9 28.5 -15.8 -54.5 214.6 137.9 644.3 131.5 10.0 -48.6 -91.3 | To Take Readings 24.76 24.6 25.9 to collect sample. 26.60 To Take Readings 23.2 25.6 25.3 24.2 26.0 27.7 24.8 23.3 24.3 25.1 25.8 25.4 24.6 To Take Readings | 1111.00
1,091
1,180
2787.00
2787.00
634
630
680
680
1,194
686
817
521
540
559
570
933
598 | 76.71 158 76.71 158 182 20.4 678.0 95.0 33.8 79.4 52.6 14.3 27.2 36.8 | NOTES: °C = Degrees Celsius. μS/cm = Micro-Siemens per centimeter. mg/L = Milligrams per liter. mV = Millivolts. NS = Not Sampled. NTU = Nephlometric Turbidity Units. $\rm EA$ Engineering, Science, and Technology, Inc. PBC TABLE 3. GROUND WATER ANALYTICAL RESULTS FOR DISSOLVED METALS | imple Location/Well ID | Sample Date
5-Jun-12 | Iron
(μg/L)
<25.0 U | Manganese
(μg/L)
14.2 | Arsenic
(μg/L)
<2.00 U | Calcium
(μg/L)
J 126,000 | Sodium
(μg/L)
53,700 | Magnesium
(μg/L)
12,100 | Aluminum
(μg/L)
<100 U | Cadmium
(μg/L)
6.4 U | Barium
(μg/L)
J 874 | |------------------------|-------------------------------------|---------------------------|-----------------------------|---|---|----------------------------|-------------------------------|--------------------------------------|---|---------------------------| | | 17-Jul-12
25-Sep-12 | 5,860
12,600 | 445
860 | 57.9
148 J | 140,000 | 65,200
50,500 J | 15,600
16,000 J | <200 U | <2.0 U | J 856 | | | 18-Dec-12
6-Jun-15 | 12,300
98.7 J | 794
281 | 51.8
2.47 | 168,000
140,000 | 56,300
63,400 | 15,500
14,700 | 2320
5.93 J | <1.00 U | J 748 | | MW-01 | 3-Dec-15
22-Apr-16 | 1,060
40,900 | 286
2,200 B | 11.6
129 | 122,000
208,000 | 53,800
147,000 | 12,300
37,500 | <100 U
<2.57 U | < 5.00 U
<0.114 U | J 727 | | | 20-Sep-16
23-Feb-17 | 29,800
26,200 | 1,490
1,260 | 380
127 | 300,000
219,000 | 96,700
69,800 | 28,300
23,400 | <100 U
<100 U | < 5.00 U | J 922 | | | 13-Sep-17
24-May-18 | 29,900
26,200 | 1,540
1,360 | 166
177 | 203,000
170,000 | 68,300
65,800 | 23,300
20,000 | <100 U
<100 U | < 5.00 U | J 754 | | | 7-Nov-18
20-Sep-16 | 26,600
28,400 | 1,450
1,460 | 167
363 | 187,000
299,000 | 67,600
93,400 | 21,400
27,700 | <200 U
<100 U | <1.0 U | J 634 | | MW 01 DUD | 23-Feb-17 | 25,400 | 1,310 | 114
150 | 229,000 | 70,600 | 24,000 | <100 U | < 5.00 U | J 670 | | MW-01-DUP | 13-Sep-17
24-May-18 | 28,100
27,300 | 1,540
1,350 | 183 | 201,000
172,000 | 66,900
65,900 | 22,700
20,300 | <100 U
<100 U | < 5.00 U | J 722 | | | 7-Nov-18
3-Dec-15 | 26,000
<25.0 U | 1,410
<5.00 U | 170
<2.00 U | | 66,300
82,700 | 21,000
10,000 | <200 U
<100 U | <1.00 U
<5.00 U | J 708 | | | 22-Apr-16
20-Sep-16 | 8,740
19,900 | 1,250 B
2,340 | 37.0
41.1 | 52,300
162,000 | 53,400
119,000 | 7,420
15,800 | 9.38 J
<100 U | <0.114 U
< 5.00 U | J 614 | | MW-02 | 23-Feb-17
13-Sep-17 | 8,440
3,780 | 2,040
767 | 34.3
31.0 | 99,500
84,500 | 136,000
51,000 | 13,300
7,680 | <100 U
<100 U | < 5.00 U | J 522 | | | 24-May-18
7-Nov-18 | 6,640
1,030 | 1,040
247 | 40.3
10.3 | 112,000
109,000 | 103,000
169,000 | 12,600
13,300 | <100 U
221 U | < 5.00 U | J 612 | | MW-02-DUP | 3-Dec-15
22-Apr-16 | <25.0 U
7,100 | <5.00 U
1,180 B | <2.00 U
26.2 | 96,900
47,800 | 82,900
53,900 | 10,000
6,890 | <100 U
6.13 J | <5.00 U
<0.114 U | | | | 3-Dec-15
22-Apr-16 | 140
87.2 | 39.0
15.0 B | 4.40
13.9 | 145,000
133,000 | 81,700
60,300 | 18,000
15,100 | 101
39.1 | <5.00 U
0.61 J | _ | | MW-03 | 22-Sep-16
23-Feb-17 | 1,070
357 | 344
126 | 4.70
23.0 | 107,000
72,300 | 40,500
22,400 | 11,100
7,250 | <100 U
<100 U | < 5.00 U
< 5.00 U | | | | 12-Sep-17
24-May-18 | 322
42.9 | 84.6
12.1 | 9.2
13.1 | 68,400
76,400 | 23,200
28,500 | 84.6
8,100 | <100 U
<100 U | < 5.00 U
< 5.00 U | | | | 7-Nov-18
2-Dec-15 | 129 UC
885 | 16.6
266 | 6.2
12.4 | 124,000
163,000 | 49,100
129,000 | 12,800
19,700 | 27.3 J
<100 U | 0.16
<5.00 U | | | | 21-Apr-16
22-Sep-16 | 104
1,780 | 135 B
969 | 29.4
16.7 | 130,000
158,000 | 82,100
107,000 | 13,500
19,100 | 4.15 J
<100 U | <0.114 U
<5.00 U | J 319 | | MW-04 | 22-Sep-16
22-Feb-17
12-Sep-17 | 335
527 | 194
246 | 64.2
11.2 | 109,000
97,300 | 60,200
49,700 | 12,800
9,270 | <100 U
<100 U
<100 U | < 5.00 U | J 285 | | | 24-May-18
6-Nov-18 | 799
1240 | 252
402 | 5.4
15.5 | 201,000
269,000 | 144,000
204,000 | 30,900
35,500 | <100 U
<100 U
73.4 J | < 5.00 U | J 436 | | | 2-Dec-15 | <25.0 U | 19.1 | <2.00 U | 139,000 | 72,800 | 18,800 | <100 U | <5.00 U | J 431 | | MWAT | 21-Apr-16
21-Sep-16 | 15.0 J
35.1 | 7.23 B
18.7 | 1.76
<2.00 U | , | 19,900
59,600 | 7,250
19,000 | 16.2 J
<100 U | <0.114 U
<5.00 U | J 641 | | MW-05 | 22-Feb-17
13-Sep-17 | <25.0 U
1,480 | <5.00 U
57.5 | <1.00 U
<2.50 U | 171,000 | 51,100
56,000 | 18,500
22,100 | <100 U
1980 | < 5.00 U | J 776 | | | 24-May-18
5-Nov-18 | <25.0 U
<100 U | 14.5
<15.00 U | <2.50 U
0.61 J | 158,000 | 89,500
37,700 | 24,400
20,100 | <100 U
<200 | < 5.00 U
<1.00 U | J 683 | | | 1-Dec-15
21-Apr-16 | 120
265 | 12.0
260 B | <2.00 U | 79,900 | 79,600
37,400 | 11,800
7,110 | <100 U
12.3 J | <5.00 U
<0.114 U | J 273 | | MW-06 | 21-Feb-17
11-Sep-17 | 5,780
6,460 | 1,220
879 | 21.0
47.3 | 130,000
144,000 | 74,100
54,400 | 12,500
13,200 | 318
<100 U | < 5.00 U | J 641 | | | 24-May-18
6-Nov-18 | 7,210
12,000 | 1,520
1,100 | 66.2
50.5 | 176,000
164,000 | 93,200
100,000 | 18,300
16,800 | 213
<200 U | < 5.00 U | | | | 1-Dec-15
20-Apr-16 | <25.0 U
1,910 | 68.9
78.2 | <2.00 U
4.95 | 126,000
101,000 B | 18,200
22,100 | 10,300
10,800 | <100 U
1,620 | <5.00 U
<0.114 U | , | | MW-07 | 20-Feb-17
11-Sep-17 | <25.0 U
<25.0 U | 53.1
27.6 | <1.00 U
<2.50 U | . , | 18,000
17,700 | 10,800
10,900 | <100 U
<100 U | < 5.00 U
< 5.00 U | | | | 24-May-18
6-Nov-18 | 60
<100 U | 280
21.1 | <2.50 U | | 18,800
19,600 | 9,990
11,500 | <100 U
<200 U | < 5.00 U | , , , | | MW-07-DUP | 1-Dec-15
2-Dec-15 | <25.0 U | 72.6
496 | <2.00 U | | 19,200
16,600 | 10,800
8,120 | <100 U
<100 U | <5.00 U | J 1,290 | | MW-08 | 19-Apr-16
20-Sep-16 | 121 F1
98.2 | | 6.50 | 124,000 B
122,000 | 42,900
39,900 | 14,200
13,900 | 16.7 J
<100 U | <0.114 U
<5.00 U | J 814 | | 1111 00 | 21-Feb-17
13-Sep-17 | 51.1
171 | 161
119 | 1.90
<2.50 U | 128,000 | 42,900
39,200 | 14,800
13,600 | <100 U
<100 U | < 5.00 U | J 1,060 | | | 2-Dec-15 | 1,520 | 40.0 | <2.00 U | 115,000 | 35,300 | 10,000 | 1,820 | <5.00 U | J 673 | | N 400 | 21-Apr-16
22-Sep-16 | <6.09 U
40.2
| 1.52 JB
5.00 | <2.00 L | - / | 42,200
57,900 | 10,600
15,300 | 13.1 J
<100 U | <0.114 U
<5.00 U | J 628 | | MW-09 | 23-Feb-17
13-Sep-17 | <25.0 U
42.7 | <5.00 U
7.20 | <1.00 U
<2.50 U | 142,000 | 51,900
38,900 | 14,900
13,400 | <100 U
<100 U | < 5.00 U | J 830 | | | 24-May-18
5-Nov-18 | 50.1
<100 U | 5.70
<15.0 U | <2.50 U
0.89 J | 171,000 | 42,800
47,800 | 14,700
16,300 | <100 U
62.3 J | < 5.00 U | J 817 | | | 3-Jun-15
2-Dec-15 | <100 U
67.8 | 73.90
117 | 2.19
<2.00 U | , , , , , , | 73,600
69,600 | 17,500
15,200 | <20.0 U
<100 U | <1.00 U
<5.00 U | J 1,070 | | MW-20 | 22-Apr-16
22-Sep-16 | <6.09 U
13,400 | 2,430 | 12.7
228 | 136,000
277,000 | 54,600
84,600 | 14,300
32,700 | <2.57 U
<100 U | <0.114 U
< 5.00 U | J 1,410 | | 20 | 21-Feb-17
13-Sep-17 | 16,400
15,600 | 1,880
1,410 | 181
182 | 277,000
234,000 | 99,400
86,400 | 33,200
28,000 | <100 U
<100 U | < 5.00 U | J 1,130 | | | 24-May-18
6-Nov-18 | 69,300
12,100 | 2,360
796 | 271
82.2 | 368,000
227,000 | 115,000
85,500 | 54,300
27,000 | 22300
5,420 | < 5.00 U | | | | 3-Jun-15
1-Dec-15 | <100 U
3,380 | 828
339 | 1.35
2.60 | 162,000
159,000 | 61,900
60,800 | 17,700
16,600 | <20.0 U
2,060 | <1.00 U
<5.00 U | , | | MW-21 | 22-Apr-16
22-Sep-16 | 15.6 J
<25.0 U | 571 B
735 | 8.84
10.5 | 130,000
132,000 | 43,700
49,600 | 13,200
14,000 | 11.1 J
<100 U | <0.114 U
< 5.00 U | | | 1V1 W -∠1 | 22-Feb-17
13-Sep-17 | <25.0 U
<25.0 U | 718
892 | 3.30
7.70 | 146,000
141,000 | 57,100
53,000 | 15,400
15,200 | <100 U
<100 U | < 5.00 U | , | | | 24-May-18
7-Nov-18 | 4640
323 UC | 461 | 6.10 | 142,000
152,000 | 58,700
56,700 | 16,200
15,600 | 4430
<200 U | < 5.00 U | J 1,040 | | MW-21-DUP | 7-Nov-18
3-Jun-15 | 187 UC
<100 U | | 7.20
0.9 J | 148,000 | 54,800
81,200 | 15,300
16,200 | <200 U
<20.0 U | <1.00 U | J 1,050 | | | 30-Nov-15
21-Apr-16 | 55.2
<6.09 U | 34.6
166 B | <2.00 U | | 75,300
75,000 | 13,800
16,200 | <100 U
<2.57 U | <5.00 U
<5.114 U | J 1,110 | | MW-22 | 21-Feb-17
12-Sep-17 | 3,550
3,210 | 1880
1220 | 48.2
35.5 | 221,000
202,000 | 93,000
93,000
84,900 | 24,100
21,600 | 240
<100 U | < 5.00 U | J 1,420 | | | 24-May-18
6-Nov-18 | 3,210
3,210
2,860 | 1470
682 | 48.2
24.4 | 202,000
206,000
154,000 | 91,600
60,200 | 22,300
15,500 | 271
499 | < 5.00 U | J 1,480 | | | 21-Apr-16
21-Feb-17 | <6.09 U
4,120 | 211 B
1,930 | 5.36
52.2 | 154,000
146,000
224,000 | 75,800
94,200 | 15,500
16,300
24,600 | <2.57 U | <0.114 U
<5.00 U | 1,140 | | MW-22-DUP | 12-Sep-17 | 3,190 | 1,550 | 48.9 | 203,000 | 84,400 | 22,000 | <100 U | < 5.00 U | 1,320 | | | 24-May-18
3-Jun-15 | 3,310
<100 U | | 48.5
0.41 J | 213,000
1 102,000
1 103,000 | 94,700
24,800 | 22,900
11,200 | 230
<20.0 U | < 5.00 U | J 642 | | | 1-Dec-15
20-Apr-16 | 278
15.3 J | 32.1
1.22 J | <2.00 U
3.08 | 80,000 B | | 10,600
9,750 | 317
14.5 J | <5.00 U
<0.114 U | J 381 | | MW-23 | 21-Sep-16
20-Feb-17 | 530
<25.0 U | 34.5
<5.00 U | <2.00 U | 108,000 | 21,400
23,600 | 10,300
11,200 | 592
<100 U | < 5.00 U | J 831 | | | 12-Sep-17
24-May-18 | <25.0 U
780 | <5.00 U
84.5 | <2.50 U | 107,000 | 20,200
25,300 | 9,930
11,300 | <100 U
868 | < 5.00 U | J 869 | | MW-23-DUP | 6-Nov-18
21-Sep-16 | <100 U
694 | <15.00 U
34.6 | <1.0 U
<2.00 U | , | 24,600
21,000 | 11,400
10,100 | <200 U
831 | <1.00 U
<5.00 U | J 767 | | | 3-Jun-15
1-Dec-15 | <100 U
<25.0 U | | 0.89 J
<2.00 U | 98,200 | 33,400
32,900 | 8,760
4,400 | <20.0 U
<100 U | <1.00 U
<5.00 U | | | | 20-Apr-16
21-Sep-16 | 2,510
<25.0 U | 367
5.80 | 7.17
<2.00 U | 121,000 B | | 10,900
4,930 | 1,820
<100 U | <0.114 U
<5.00 U | J 1,080 | | NOV 24 | 21-3cp-10 | | | | | 30,100 | 4,370 | <100 U | | J 217 | | MW-24 | 21-Feb-17 | <25.0 U
<25.0 U | | <1.00 U
<2.50 U | | | | | | J 177 | | MW-24 | | | | <1.00 C
<2.50 U
<2.50 U
0.62 J | J 30,200
J 89,000 | 28,100
27,000
26,300 | 3,510
9,690
10,200 | <100 U
<100 U
<100 U
<200 U | < 5.00 U
< 5.00 U
< 5.00 U
< 1.0 U | J 361 | NOTES: MW-25 was dry during the pre-injection sampling event and was not sampled. B = Compound was found in the blank and sample. F1 = MS and/or MSD Recovery is outside acceptance limits. J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. μg/L = Micrograms per liter. NS = Not Sampled. U = Indicates the analyte was analyzed for but not detected. TABLE~4.~GROUND~WATER~ANALYTICAL~RESULTS~FOR~MONITORED~NATURAL~ATTENUATION~PARAMETERS | mple Location/Well ID | Sample Date | Methane
(μg/L) | | Nitrate Nitrite
(mg/L) | as N | Total Organic Carbon (mg/L) | Orthophosphate
(mg/L) | Ammoni
(mg/L) | a | |-----------------------|------------------------|-------------------|---------------|---------------------------|-----------|-----------------------------|---------------------------|--------------------|---| | | 3-Dec-15 | 2,350 | | 1.36 | F1 | 2.18 | <0.0104 U | < 0.0675 | | | | 22-Apr-16
20-Sep-16 | 7,430
15,900 | | <0.017
<0.019 | U | 1,690
113 | 16.8 H
0.194 H | 7.35
0.099 | | | MW-01 | 23-Feb-17 | 18,100 | | < 0.019 | U | 30.6 | 0.0734 | 2.49 | | | | 13-Sep-17 | 14,000 | | 0.074 | J | 15.7 | 0.5920 F1 B | 2.38 | | | | 24-May-18
7-Nov-18 | 14,000
12,000 | | <0.040
0.041 | U
J | 8.7
7.2 | 0.6100
1.30 | 1.70
3.00 | | | | 20-Sep-16 | 17,400 | | < 0.019 | U | 113 | 0.121 H | 0.132 | | | | 23-Feb-17 | 16,100 | | < 0.019 | U | 30.1 | 0.325 | 2.65 | | | MW-01-DUP | 13-Sep-17
24-May-18 | 14,200
14,000 | | 0.072
<0.040 | J
U | 15.7
8.8 | 1.130 B
0.200 | 2.44
1.80 | | | | 7-Nov-18 | 12,000 | | 0.046 | J | 8.0 | 1.20 | 0.54 | | | | 3-Dec-15 | 2.50 | | 8.12 | | 1.36 | 0.025 J | < 0.0675 | | | | 22-Apr-16
20-Sep-16 | 16,800
18,900 | | <0.017
<0.019 | U
U | 89.9
20.6 | 5.32 H
0.373 H | 0.517
1.98 | | | MW-02 | 23-Feb-17 | 9,220 | | < 0.019 | U | 9.31 | 1.95 | 1.34 | | | | 13-Sep-17 | 2,900 | | 0.027 | J | 3.79 | 1.35 B | 0.60 | | | | 23-May-18
7-Nov-18 | 10,000 | | 0.400
15.800 | | 4.80
4.70 | 1.40
0.40 | 0.62 | | | MW-02-DUP | 3-Dec-15 | 1.88 | | 6.47 | | 1.41 | 0.032 J | < 0.0675 | | | MW-02-DUP | 22-Apr-16 | 11,000 | | < 0.017 | U | 94.0 | 4.01 H | 0.555 | | | | 3-Dec-15
22-Apr-16 | 0.894
3.27 | J | 10.1
2.42 | | 5.19
14.1 | 0.281
0.314 H | <0.0675
<0.0675 | | | | 22-Sep-16 | 1,690 | | 2.28 | | 7.08 | 0.415 | 0.341 | | | MW-03 | 22-Feb-17 | 2,950 | | < 0.019 | U | 22.5 | 0.737 | 0.0878 | | | | 12-Sep-17
22-May-18 | 51.0
4.0 | J | 0.21 | | 9.0
16.0 | 1.740
0.550 | 0.3040
<0.050 | | | | 6-Nov-18 | 20.0 | 3 | 0.800 | | 10.30 | 0.51 | 0.130 | | | | 2-Dec-15 | 283 | | 0.0301 | J | 19.3 | 0.781 | 1.00 | | | | 21-Apr-16 | 114 | | <0.017 | U | 20.6 | 0.501 | <0.0675 | _ | | MW-04 | 22-Sep-16
22-Feb-17 | 2,740
6.59 | _ | <0.019
<0.019 | U
U | 15.4
18.3 | 0.566
0.376 | 1.140
0.158 | | | * - | 12-Sep-17 | 785.00 | | 0.057 | J | 17.5 | 1.070 | 0.422 | | | | 23-May-18 | 97.00 | | 0.130 | ** | 11.8 | 0.290 | 0.660 | | | | 6-Nov-18
2-Dec-15 | 24.00
36.3 | _ | <0.040
5.48 | U | 15.5
1.98 | 0.31
<0.0104 U | 0.082
<0.0675 | | | | 21-Apr-16 | 1.36 | | 1.21 | | 4.61 | 0.064 | < 0.0675 | | | MW 05 | 21-Sep-16 | 66.2 | $\Box \Gamma$ | 0.927 | \Box | 2.44 | 0.010 J | <0.022 | | | MW-05 | 22-Feb-17
13-Sep-17 | 8.10
42.30 | | 1.58 | | 2.57
2.15 | 0.009 J
0.006 JB | <0.022
<0.022 | | | | 21-May-18 | 3.30 | J | 11.30 | | 2.10 | 0.034 J | < 0.050 | | | | 5-Nov-18 | <3.00 | U | 0.97 | | 2.60 | 0.013 | <0.050 | _ | | | 1-Dec-15
21-Apr-16 | 5.73
12,000 | _ | 1.88
<0.017 | U | 4.17
31.1 | 0.105 J
0.347 | <0.0675
<0.0675 | | | | 21-Sep-16 | 14,200 | | < 0.017 | U | 79.0 | 0.620 | 0.134 | | | MW-06 | 22-Feb-17 | 9,940 | | < 0.019 | U | 31.2 | 0.313 | 0.572 | | | | 11-Sep-17
22-May-18 | 11,000
15,000 | | <0.019
<0.040 | U
U | 7.1
8.5 | 0.233 B
1.200 | 0.450
1.200 | | | | 6-Nov-18 | 10,000 | | <0.040 | U | 10.20 | 0.660 | 1.100 | | | | 1-Dec-15 | 1.05 | | 0.371 | | 0.936 | J 0.023 J | < 0.0675 | | | | 20-Apr-16 | <0.357
<0.218 | U | 1.93 | | | J <0.0519 U
J <0.006 U | <0.0675
<0.022 | | | MW-07 | 21-Sep-16
20-Feb-17 | 0.749 | J | 0.563
0.672 | | 1.05 | 0.0190 J | 0.0252 | | | | 11-Sep-17 | 3.180 | J | 0.762 | F1 | 0.58 | J 0.0524 B | < 0.022 | | | | 21-May-18 | 7.500 | ** | 0.560 | | 1.50 | 0.0490 J | <0.050 | | | MW-07-DUP | 5-Nov-18
1-Dec-15 | <3.00
1.11 | U | 0.300
0.382 | | | J <0.003 U
J 0.0250 J | 0.052
<0.0675 | | | 1111 0, 201 | 2-Dec-15 | 710 | | < 0.017 | U F1 | 35.8 | 0.253 | 0.294 | | | MW 00 | 19-Apr-16 | 276 | | 0.781 | | | 0.0273 J | <0.0675 | | | MW-08 | 20-Sep-16
21-Feb-17 | 114 | | 0.772
0.896 | | 1.57
1.73 | 0.0256 J H
0.0241 J | <0.022
<0.022 | Ţ | | | 13-Sep-17 | 3.53 | J | 0.344 | | 1.40 | 0.0316 JB | < 0.022 | | | | 2-Dec-15 | <0.357 | U | 1.57 | | | J <0.0104 U | <0.0675 | | | | 21-Apr-16
22-Sep-16 | 0.493
0.485 | J | 1.67
1.49 | | 2.57
2.36 | 0.0238 J
<0.006 U | <0.0675
<0.022 | | | MW-09 | 23-Feb-17 | <0.218 | U | 2.64 | | 2.30 | 0.0099 J | < 0.022 | | | | 12-Sep-17 | 0.333 | J | 2.86 | | 1.89 | <0.187 U | < 0.022 | | | | 24-May-18
5-Nov-18 | 7.300
<3.00 | U | 2.30 | | 1.90
2.20 | <0.03 U
0.0085 J | <0.05
<0.05 | | | | 2-Dec-15 | 969 | - | 0.235 | | 5.09 | <0.0519 U | < 0.0675 | | | | 22-Apr-16 | 2,650 | | < 0.017 | U | 5.29 | 0.015 ЈН | < 0.0675 | | | MW-20 | 22-Sep-16
21-Feb-17 |
8,440
13,900 | | <0.019
<0.019 | U F1
U | 76.0
34.7 | <0.006 U
<0.006 U | <0.022
<0.022 | | | 20 | 13-Sep-17 | 10,300 | | 0.032 | JF1 | 6.2 | <0.006 U | 0.0593 | _ | | | 24-May-18 | 12,000 | | < 0.040 | U | 125.0 | <0.060 U | < 0.050 | | | | 6-Nov-18 | 12,000
4.16 | | <0.040
16.2 | U | 6.70
1.52 | <0.015 U
0.450 J | 0.0810
<0.0675 | | | | 1-Dec-15
22-Apr-16 | 18.4 | | 2.74 | | 1.52 | 0.450 J
0.0255 J H | <0.0675 | | | | 22-Sep-16 | 1,600 | | 2.20 | | 1.12 | 0.0175 J | < 0.022 | _ | | MW-21 | 22-Feb-17
13-Sep-17 | 1,160
283 | | 1.13
0.46 | | 1.07
0.98 | 0.0097 J
J 0.0204 JB | <0.022
<0.022 | | | | 23-May-18 | 160 | | 1.90 | | 1.50 | 0.0204 JB
<0.15 U | <0.022 | | | | 7-Nov-18 | 22 | | 1.20 | | 1.60 | 0.0120 | 0.1100 | | | MW-21-DUP | 7-Nov-18
30-Nov-15 | 18
590 | _ | 1.20
1.15 | F1 | 1.60 | 0.0120
0.300 J | 0.0680
<0.0675 | | | | 30-Nov-15
21-Apr-16 | 834 | -+ | < 0.017 | U F1 | 2.35
2.88 | 0.300 J
<0.0104 U | <0.0675 | | | | 21-Sep-16 | 12,300 | | < 0.019 | U | 15.2 | <0.006 U | 0.0319 | | | MW-22 | 21-Feb-17 | 8,270 | | <0.019 | U | 3.46 | <0.006 U | <0.022 | | | | 12-Sep-17
22-May-18 | 12,300
11,000 | _ | 0.024
<0.040 | J
U | 3.01
17.20 | <0.187 U
0.0710 J | <0.022
<0.050 | | | | 6-Nov-18 | 9,700 | | < 0.040 | U | 5.80 | 0.1400 | 0.0720 | | | | 21-Apr-16 | 998 | | 0.018 | J | 2.93 | <0.0104 U | <0.0675 | | | MW-22-DUP | 21-Feb-17
12-Sep-17 | 7,690
13,000 | | 0.078 | J
J | 3.30
3.03 | <0.006 U
<0.187 U | 0.0346
<0.022 | _ | | | 22-May-18 | 10,000 | | < 0.040 | U | 5.00 | 0.0630 J | < 0.050 | | | | 1-Dec-15 | <0.357 | U | 1.01 | | 1.09 | <0.0104 U | <0.0675 | | | | 20-Apr-16
21-Sep-16 | <0.357
0.272 | U
J | 0.485
1.24 | | | J <0.0519 U
J <0.006 U | <0.0675
0.0440 | | | MW-23 | 20-Feb-17 | <0.218 | U | 1.15 | | | J <0.006 U | <0.022 | _ | | | 12-Sep-17 | < 0.218 | U | 1.09 | | 0.616 | J <0.187 U | < 0.022 | | | | 21-May-18
5-Nov-18 | <0.20
<3.00 | U | 1.50 | | | J <0.15 U
J <0.003 U | <0.050
0.0570 | | | MW-23-DUP | 5-Nov-18
21-Sep-16 | <3.00
<0.218 | U | 1.60 | | | J <0.003 U
J <0.006 U | <0.022 | | | J 224 | 1-Dec-15 | < 0.357 | U | 0.468 | F1 F2 | 1.55 | <0.0104 U | < 0.0675 | | | | 20-Apr-16 | 0.754 | J | 0.670 | | | J <0.0519 U | <0.0675 | | | MW-24 | 21-Sep-16
21-Feb-17 | 0.312 | J | 0.543
1.02 | | | J <0.006 U
J <0.006 U | <0.022
<0.022 | | | | 12-Sep-17 | <0.218 | U | 1.21 | | | J <0.187 U F1 | <0.022 | _ | | | 22-May-18 | <3.0 | U | 0.65 | | 1.100 | 0.0300 J | < 0.050 | | | | 6-Nov-18 | < 3.00 | U | 0.65 | | 0.540 | J 0.0210 | < 0.050 | | NOTES: F1 = MS and/or MSD Recovery is outside acceptance limits. F2 = MS/MSD RPD exceeds control limits. H = Sample was prepped or analyzed beyond the specified holding time. J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. MDL = Method Detection Limit MS/MSD = Matrix Spike/Matrix Spike Duplicate RL = Reporting Limit. U = Indicates the analyte was analyzed for but not detected. $\rm EA$ Engineering, Science, and Technology, Inc. PBC TABLE 5. GROUND WATER ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS | Sample Location/Well ID | Sample Date | PCI | | TCE | | cis-1,2-I | | trans-1,2-I | | Vinyl Chle | | Ethe | | | Ethane | | |-----------------------------|--|--|--|--|--|---|--|---|---|--|--
---|---|---|---------------------------------------|---| | Sample Location/ Well ID | 5-Jun-12 | (μg/L)
17,100 | (μM/L) | (μg/L)
980 | (μM/L)
7.46 | (μg/L)
1,260 | (μM/L)
13.0 | (μg/L)
7.60 | (μM/L)
0.078 | (μg/L)
117 | (μM/L)
1.87 | (μg/L)
0.823 J | (μM/L)
0.029 | (μg/L)
0.800 | J | (μM/L)
0.027 | | | 17-Jul-12
25-Sep-12 | 944
53.0 | J 5.69
0.320 | 101 | 0.769 | 6,050
16,000 | 62.4
165 | 21.1
16.0 J | 0.218
J 0.165 | 84.2
190 | 1.35 | 0.317 J
<28.0 U | 0.011 | 0.580
<32.0 | J
U | 0.019 | | | 18-Dec-12 | 75.0
29,800 | 0.452
179.70 | 17.0
2,510 | 0.129 | 7,800
11,500 | 80.5
119 | 8.90
<2,500 L | 0.092 | 93.0
794 J | 1.49 | 12.5 | 0.446 | 1.08 | U | | | MW-01 | 6-Jun-15
3-Dec-15 | 14,500 | 87.4 | 1,990 | 15.1 | 6,640 | 68.5 | 36.3 | 0.378 | 420 | 6.72 | NA
3.53 | 0.126 | NA
2.41 | | 0.080 | | | 22-Apr-16
20-Sep-16 | 61.3
<2.00 | 0.370
U | 20.2
<2.00 U | | 12,300
6.40 | 0.066 | 27.4
4.90 | 0.286
0.051 | 386
5.00 | 6.18
0.080 | 64.0
111 | 2.28
3.96 | 3.00
1.72 | U | 0.100
0.057 | | | 23-Feb-17
13-Sep-17 | | U
U | <1.00 U
<1.00 U | | 11.4
24.5 | 0.118
0.253 | 9.90
4.60 | 0.103
0.048 | 1.20
78.1 | 0.019
1.250 | 96.0
87.9 | 3.42
3.13 | 187
589 | | 6.22
19.59 | | | 24-May-18
7-Nov-18 | <1.00 | U
0.019 | <1.00 U | 0.029 | 471.0
1,230.0 | 4.858
12.687 | 4.60
7.40 | 0.048 | 276.00
311.00 | 4.416
4.976 | 140.0
150.0 | 4.99
5.35 | 1300
1,500 | | 43.23
49.88 | | | 20-Sep-16
23-Feb-17 | | U
U | <2.00 U
<1.00 U | | 3.80
10.5 | 0.039
0.108 | 4.90
10.0 | 0.051
0.104 | 3.80
1.30 | 0.061
0.021 | 124
93.2 | 4.42
3.32 | 1.72
171 | U | 5.69 | | MW-01-DUP | 13-Sep-17
24-May-18 | <1.00 | U | <1.00 U | | 21.5
462.0 | 0.222
4.765 | 4.6
4.9 | 0.048 | 72.5
263.00 | 1.160
4.208 | 87.1
140.0 | 3.11
4.99 | 599
1300 | | 19.92
43.23 | | | 7-Nov-18 | 2.8 | 0.017 | 1.8 | | 1,190.0 | 12.274 | 5.60 | 0.058 | 309.00 | 4.944 | 150.0 | 5.35 | 1,500 | | 49.9 | | | 3-Dec-15
22-Apr-16 | 599
13.0 | 3.61
0.078 | 210
3.08 | 1.60
0.023 | 630
351 | 6.50
3.62 | 3.40
1.88 | 0.035
0.020 | <2.00 U
237 | 3.79 | <0.324 U
8.82 | 0.314 | <0.303
<0.303 | U | | | MW-02 | 20-Sep-16
23-Feb-17 | <2.00
<1.00 | U
U | <2.00 U | | <2.00 U | 1.92 | <2.00 U | 0.019 | <2.00 U
46.9 | 0.750 | 0.796 U
6.13 P | | 1.15
65.7 | U | 2.18 | | | 13-Sep-17
23-May-18 | <1.00
1.8 | U
0.011 | <1.00 U | 0.009 | 5 | 0.07
0.05 | <1.00 U | | 3.8
<2.00 U | 0.061 | 4.52 J
0.74 J | 0.161
0.026 | 51.4
27.0 | | 1.71
0.90 | | | 7-Nov-18
3-Dec-15 | 508.0
900 | 3.063
5.43 | 222.00
254 | 1.93 | 625.00
545 | 5.62 | 1.1
3.40 | 0.035 | 35.00
<2.00 U | | 41.00
<0.324 U | 1.462 | 41.00
<0.303 | U | 1.36 | | MW-02-DUP | 22-Apr-16 | 12.8 | 0.077 | 3.01 | 0.023 | 337 | 3.48 | 1.78 | 0.019 | 270 | 4.32 | 6.37 | 0.227 | 3.75
<0.303 | | 0.125 | | | 3-Dec-15
22-Apr-16 | 12.7
2.22 | 0.077 | 16.2
2.03 | 0.123
0.015 | 182
15.3 | 1.88
0.158 | <0.192 L | J | <2.00 U
0.663 J | 0.011 | <0.324 U | | < 0.303 | U | | | MW-03 | 22-Sep-16
22-Feb-17 | 28.9
11.9 | 0.174
0.072 | 59.5
13.0 | 0.453
0.099 | 323
94.2 | 3.33
0.97 | 3.50
<1.00 U | 0.036
J | 35.4
15.8 | 0.566
0.253 | 1.19 J
<0.398 U | | <0.573
<0.573 | U | | | | 12-Sep-17
22-May-18 | 1.2
3.4 | 0.007
0.021 | 7.3
4.9 | 0.056
0.037 | 191
34.2 | 1.97
0.35 | <1.00 U
<1.00 U | _ | 9.5
<2.00 U | 0.152 | 1.17 J
<0.20 U | | <0.573
<0.20 | U | | | | 6-Nov-18
2-Dec-15 | 2.50
<2.00 | 0.015
U | 4.00
<2.00 U | 0.030 | 39.8
<2.00 U | 0.41
J | <1.00
<2.00 U | J | <1.00
<2.00 U | | <1.00 U
<0.324 U | | <1.00
<0.303 | U
U | | | | 21-Apr-16
22-Sep-16 | < 0.333 | U | <0.138 U
<2.00 U | J | <0.157 U | | <0.192 U
<2.00 U | J | <0.248 U
<2.00 U | | <0.324 U
<0.324 U
<0.398 U | | <0.303
<0.573 | U | | | MW-04 | 22-Feb-17 | <1.00 | U | <1.00 U | J | <1.00 U | J | <1.00 U | J | <1.00 U | | <0.398 U | | < 0.573 | U | | | | 12-Sep-17
23-May-18 | <1.00 | U
U | <1.00 U | J | <1.00 U | J | <1.00 U | J | <1.00 U
<1.00 U | | <0.398 U
<0.20 U | | <0.573
<0.20 | U | | | | 6-Nov-18
2-Dec-15 | <2.00 | U
U | <1.00 U
<2.00 U | J | <1.00 U
<2.00 U | J | <1.00 U
<2.00 U | J | <1.00 U
<2.00 U | | <1.00 U
<0.324 U | | <1.00
<0.303 | U
U | | | | 21-Apr-16
21-Sep-16 | | U | <0.138 U
<2.00 U | | <0.157 U | | <0.192 U
<2.00 U | | <0.248 U
<2.00 U | | <0.324 U
<0.398 U | | <0.303
<0.573 | U
U | | | MW-05 | 22-Feb-17
13-Sep-17 | | U
U | <1.00 U
<1.00 U | | <1.00 U
<1.00 U | | <1.00 U
<1.00 U | _ | <1.00 U
<1.00 U | | <0.398 U
<0.398 U | _ | <0.573
<0.573 | U
U | | | | 21-May-18
5-Nov-18 | <1.00 | U
U | <1.00 U | J | <1.00 U | J | <1.00 U | J | <1.00 U | | <0.20 U
<1.00 U | | <0.20
<1.00 | U | | | | 1-Dec-15 | 3,890 | 23.5 | 393 | 2.99 | 1,130 | 11.7 | <5.00 L | J | 39.9 | 0.638 | <0.324 U | | < 0.303 | U | | | | 21-Apr-16
21-Sep-16 | | 0.055
U | 1.49
<2.00 U | | 229 F
<2.00 U | J | 2.41
12.0 | 0.025
0.125 | 71.5
6.20 | 1.14
0.10 | 26.7
148 | 0.952
5.28 | 4.63
<1.15 | U | 0.154 | | MW-06 | 21-Feb-17
11-Sep-17 | <1.00 | U
U | <1.00 U
<1.00 U | J | 2.10
9.00 | 0.02 | <1.00 U | 0.017 | <1.00 U
15.5 | 0.25 | <0.398 U
58 | 2.06 | 62.3
159.0 | | 2.07
5.29 | | | 22-May-18
6-Nov-18 | |
U
U | <1.00 U | | 3.30
1.60 | 0.03 | 1.2
1.10 | 0.013 | 2.30
5.30 | 0.04 | 0.44 J
<1.00 U | 0.02 | 29.0
60 | | 0.96
2.00 | | | 1-Dec-15
20-Apr-16 | <2.00
0.740 | U
J 0.004 | <2.00 U
<0.138 U | | <2.00 U
<0.157 U | | <2.00 U
<0.192 U | _ | <2.00 U
<0.248 U | | <0.324 U
<0.324 U | _ | <0.303
<0.303 | U
U | | | MW-07 | 21-Sep-16
20-Feb-17 | <2.00 | U
U | <2.00 U | J | <2.00 U | J | <2.00 U | J | <2.00 U
<1.00 U | | <0.398 U
<0.398 U | | <0.573
<0.573 | U | | | W W-O/ | 11-Sep-17 | <1.00 | U | <1.00 U | J | <1.00 U | J | <1.00 U | J | <1.00 U | | <0.398 U | | < 0.573 | U | | | | 21-May-18
5-Nov-18 | <1.00 | U
U | <1.00 U | J | <1.00 U | J | <1.00 U | J | <1.00 U
<1.00 U | | <0.20 U
<1.00 U | | <0.20
<1.00 | U
U | | | MW-07-DUP | 1-Dec-15
2-Dec-15 | <2.00
3.50 | U
0.021 | <2.00 U | | <2.00 U | | <2.00 U
<2.00 U | | <2.00 U
<2.00 U | | <0.324 U
0.377 J | _ | <0.303
<0.303 | U
U | | | MW-08 | 19-Apr-16
20-Sep-16 | 0.413
<2.00 | J 0.002
U | <0.138 U
<2.00 U | | 0.393 J
<2.00 U | | 0.192 U
<2.00 U | | <0.248 U
<2.00 U | | <0.324 U F1
<0.398 U | | <0.303
<0.573 | U F1 F2
U F1 | | | | 21-Feb-17
13-Sep-17 | | U
U | <1.00 U
<1.00 U | | <1.00 U
<1.00 U | | <1.00 U | | <1.00 U
<1.00 U | | <0.398 U
<0.398 U | | <0.573
<0.573 | U F1
U | | | | 2-Dec-15 | 8.20 | 0.049
J 0.002 | <2.00 U
<0.138 U | J | 7.10
<0.157 U | 0.073 | <2.00 U
<0.192 U | J | <2.00 U
<0.248 U | | <0.324 U
<0.324 U | | <0.303
<0.303 | U | | | MW 00 | 21-Apr-16
22-Sep-16 | <2.00 | U | <2.00 U | J | <2.00 U | J | <2.00 L | J | <2.00 U | | <0.398 U | | < 0.573 | U | | | MW-09 | 23-Feb-17
12-Sep-17 | <1.00 | U
U | <1.00 U | J | <1.00 U | J | <1.00 U | J | <1.00 U
<1.00 U | | <0.398 U
<0.398 U | | <0.573
<0.573 | U
U | | | | 24-May-18
5-Nov-18 | | U
U | <1.00 U
<1.00 U | | <1.00 U | | <1.00 U | _ | <1.00 U
<1.00 U | | <0.20 U
<1.00 U | _ | 1.200
<1.00 | J
U | 0.04 | | | 3-Jun-15
2-Dec-15 | 2,380
5,550 | 14.35
33.5 | 586
1,850 | 4.46
14.1 | 13,000
13,800 | 134
142 | <500 U
511 J | J
J 5.33 | 191 J
313 | 3.06
5.01 | NA
1.70 J | 0.061 | NA
1.22 | J | 0.041 | | | 22-Apr-16
22-Sep-16 | 4,140
475 | 25.0
2.86 | 977
198 | 7.44
1.51 | 19,600 J
11,900 | 202
123 | 45.8 J
72.5 | 0.477
0.756 | 932
2,500 | 14.9
40.0 | 19.9
1,910 | 0.709
68.1 | 2.09
10.3 | U | 0.070 | | MW-20 | 21-Feb-17
13-Sep-17 | 135
228 | 0.814
1.375 | 60.2
61.4 | 0.458 | 2,350
1,400 | 24.2 | 26.2
25.3 | 0.273
0.264 | 304
340 | 4.86 | 1,100
490 | 39.2
17.5 | <1.72
248 | Ü | 8.247 | | | 23-May-18 | 7 | 0.045 | 8.9 | 0.068 | 1,460 | 15.1 | 18.7 | 0.195 | 313 | 5.01 | 260 | 9.3 | 110 | | 3.658 | | | 6-Nov-18
3-Jun-15 | 6.38 | 0.127
0.038 | 71.3
0.433 | 0.543 | 550
1.18 J | | 8.1
<5.00 U | | 117
<2.00 U | | 35
NA | 1.2 | 190
NA | | 6.319 | | | 1-Dec-15
22-Apr-16 | 2.20
0.477 | 0.013
J 0.003 | <2.00 U
<0.138 U | J | <2.00 U
<0.157 U | J | <2.00 U
<0.192 U | J | <2.00 U
<0.248 U | | <0.324 U
<0.324 U | | <0.303
<0.303 | U
U | | | MW-21 | 22-Sep-16
22-Feb-17 | <1.00 | U
U | <2.00 U | J | <2.00 U | J | <2.00 U | J | <2.00 U
<1.00 U | | <0.398 U
<0.398 U | | <0.573
<0.573 | U
U | | | | 13-Sep-17
23-May-18 | | U
U | <1.00 U
<1.00 U | | <1.00 U | | <1.00 U
<1.00 U | | <1.00 U
<1.00 U | | <0.398 U
0.220 J | | <0.573
0.260 | U
J | 0.01 | | MW-21-DUP | 7-Nov-18
7-Nov-18 | | U
U | <1.00 U | | <1.00 U | | <1.00 U | | <1.00 U
<1.00 U | | <1.00 U
<1.00 U | | <1.00
<1.00 | U
U | | | | 3-Jun-15 | 10,100 | 60.91
45.3 | 934 J
957 | 7.11
7.28 | 4,230
3,660 | 43.6
37.8 | <1,000 U | | 182 J
110 | 2.91
1.76 | NA
<0.324 U | | NA
<0.303 | U | | | | 30-Nov-15 | 7.510 | | | 1.71 | 11,000 | 37.8
113
8.14 | 88.2
17.0 | 0.919 | 615
540 | 9.84
8.64 | 14.0
831 | 0.499 | 1.08 | J
U | 0.036 | | | 30-Nov-15
21-Apr-16 | 7,510
639 | 3.85 | 225 | т | | | 1 / .0 | | 340 | | 831 | | | U | | | MW-22 | 21-Apr-16
21-Sep-16
21-Feb-17 | 639
<2.00
<1.00 | 3.85
U
U | <2.00 U
1.50 | 0.011 | 789
596 | 6.15 | 8.50 | 0.177 | 172 | 2.75 | 107 | 3.81 | 125 | | 4.16 | | MW-22 | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18 | 639
<2.00
<1.00
<1.00
<1.00 | 3.85
U
U
U
U | <2.00 U
1.50
6.50
1.00 | 0.011
0.049
0.008 | 596
584
69.9 | 6.15
6.02
0.72 | 8.50
8.3
9.7 | 0.089
0.087
0.101 | 173
122 | 2.77
1.95 | 64
110 | 2.27
3.92 | 107
130 | | 3.56
4.32 | | MW-22 | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17 | 639
<2.00
<1.00
<1.00 | 3.85
U
U
U | <2.00 U
1.50
6.50 | 0.011
0.049 | 596
584 | 6.15
6.02
0.72
0.30 | 8.50
8.3 | 0.089
0.087 | 173 | 2.77 | 64 | 2.27 | 107 | J | 3.56 | | MW-22
MW-22-DUP | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
6-Nov-18 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 11 1,680 <1.00 | 3.85
U
U
U
U
U
0.06 | <2.00 U
1.50
6.50
1.00
2.70 | 0.011
0.049
0.008
0.021 | 596
584
69.9
29.3 | 6.15
6.02
0.72
0.30 | 8.50
8.3
9.7
3.90 | 0.089
0.087
0.101
0.041 | 173
122
10 | 2.77
1.95
0.16 | 64
110
7 | 2.27
3.92
0.26 | 107
130
75 | J | 3.56
4.32
2.49 | | | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18 | 639
<2.00
<1.00
<1.00
<1.00
11
1,680
<1.00
<1.00
<1.00 | 3.85
U
U
U
U
0.06
10.13
U
U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008 | 596
584
69.9
29.3
12,500 E
648
523
74.2 | 6.15
6.02
0.72
0.30
E 129
6.68
5.39
0.77 | 8.50
8.3
9.7
3.90
77.8
10.2
8.0 | 0.089
0.087
0.101
0.041
0.811
0.106
0.083
0.107 | 173
122
10
675
165
170 | 2.77
1.95
0.16
10.8
2.64
2.72
2.05 | 64
110
7
17.6
101
71
100.0 | 2.27
3.92
0.26
0.627
3.60
2.51
3.57 | 107
130
75
1.82
113
132
120 | J | 3.56
4.32
2.49
0.061
3.76
4.39
3.99 | | | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18
3-Jun-15
1-Dec-15 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 11 1,680 <1.00 <1.00 <1.00 <1.00 <2.00 | 3.85 U U U U U U 0.06 10.13 U U U J 0.006 U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 5.00 U | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008 | 596
584
69.9
29.3
12,500 E
648
523
74.2
<5.00 U
<2.00 U | 6.15
6.02
0.72
0.30
E 129
6.68
5.39
0.77 | 8.50
8.3
9.7
3.90
77.8
10.2
8.0
10.30
<5.00 L
<2.00 L | 0.089
0.087
0.101
0.041
0.811
0.106
0.083
0.107
J | 173 122 10 675 165 170 128 <2.00 U <2.00 U | 2.77
1.95
0.16
10.8
2.64
2.72
2.05 | 64
110
7
17.6
101
71
100.0
NA
<0.324 U | 2.27
3.92
0.26
0.627
3.60
2.51
3.57 | 107
130
75
1.82
113
132
120
NA
<0.303 | U | 3.56
4.32
2.49
0.061
3.76
4.39
3.99 | | | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18
3-Jun-15
1-Dec-15
20-Apr-16
21-Sep-16 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 | 3.85 U U U 0.06 10.13 U U J 0.006 U J 0.006 U U 0.013 | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 <0.138 U <2.00 U <2.00 U | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008
0.008 | 596
584
69.9
29.3
12,500 E
648
523
74.2
<5.00 U
<0.157 U
<2.00 U | 6.15
6.02
0.72
0.30
129
6.68
5.39
0.77 | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 <5.00 U <2.00 U <2.00 U <2.00 U | 0.089
0.087
0.101
0.041
0.811
0.106
0.083
0.107
J
J
J | 173 122 10 675 165 170 128 <2.00 U <0.248 U <2.00 U | 2.77
1.95
0.16
10.8
2.64
2.72
2.05 | 64
110
7
17.6
101
71
100.0
NA
<0.324 U
<0.324 U
<0.398 U | 2.27
3.92
0.26
0.627
3.60
2.51
3.57 | 107
130
75
1.82
113
132
120
NA
<0.303
<0.303 | U
U
U | 3.56
4.32
2.49
0.061
3.76
4.39
3.99 | | MW-22-DUP | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18
3-Jun-15
1-Dec-15
20-Apr-16
21-Sep-16
21-Sep-16
21-Sep-17 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 | 3.85 U U U U 0.06 10.13 U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 U <0.138 U <1.00 | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008
0.008 | 596 584 69.9 29.3 12,500 E 648 523 74.2 <5.00 U <2.00 U <1.00 U <1.00 U | 6.15
6.02
0.72
0.30
2 129
6.68
5.39
0.77

1
1
1 | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 <<5.00 U <0.192 U <1.00 U <1.00 U <1.00 U | 0.089
0.087
0.101
0.041
0.811
0.106
0.083
0.107
J
J
J
J
J | 173 122 10 675 165 170 128 <2.00 U <2.00 U <0.248 U <1.00 U <1.00 U | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 |
64
110
7
17.6
101
71
100.0
NA
<0.324 U
<0.324 U
<0.398 U
<0.398 U | 2.27
3.92
0.26
0.627
3.60
2.51
3.57 | 107
130
75
1.82
113
132
120
NA
<0.303
<0.303
<0.573
<0.573 | U
U
U
U | 3.56
4.32
2.49
0.061
3.76
4.39
3.99 | | MW-22-DUP | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18
3-Jun-15
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <2.00 <2.00 <0.333 2.10 2.70 | 3.85 U U U U 0.06 10.13 U U J 0.006 U U J 0.006 U U 0.013 0.016 | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 U <0.138 U <1.00 U <1.00 U <1.00 U | 0.011
0.049
0.008
0.008
0.014
0.049
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008 | 596
584
69.9
29.3
12,500 E
648
523
74.2
<5.00 U
<2.00 U
<2.00 U
<2.00 U | 6.15 6.02 0.72 0.30 129 6.68 5.39 0.77 J - | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 <5.00 | 0.089 0.087 0.101 0.041 0.811 0.106 0.083 0.107 J | 173 122 10 675 165 170 128 <2.00 U <0.248 U <2.00 U <1.00 U <1.00 U | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 | 64
110
7
17.6
101
71
100.0
NA
<0.324 U
<0.324 U
<0.324 U
<0.398 U | 2.27
3.92
0.26
0.627
3.60
2.51
3.57 | 107
130
75
1.82
113
132
120
NA
<0.303
<0.573
<0.573 | U
U
U | 3.56
4.32
2.49
0.061
3.76
4.39
3.99 | | MW-22-DUP | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18
3-Jun-15
1-Dec-15
20-Apr-16
21-Sep-16
21-Sep-17
21-May-18
21-Sep-17
21-May-18 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <2.00 <0.333 2.10 2.70 <1.00 1.80 1.40 <2.00 <1.40 <1.40 <2.00 | 3.85 U U U U 0.06 10.13 U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008 | 596 584 69.9 29.3 12,500 E 648 523 74.2 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U | 6.15 6.02 0.72 0.30 129 6.68 5.39 0.77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U | 0.089 0.087 0.101 0.041 0.811 0.106 0.083 0.107 J | 173 122 10 675 165 170 128 <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 | 64
110
7
17.6
101
71
100.0
NA
<0.324 U
<0.324 U
<0.328 U
<0.398 U
<0.398 U
<0.398 U
<1.00 U
<1.00 U | 2.27 3.92 0.26 0.627 3.60 2.51 3.57 | 107
130
75
1.82
113
132
120
NA
<0.303
<0.303
<0.573
<0.573
<0.573
<0.573
<0.573 | U
U
U
U
U | 3.56 4.32 2.49 0.061 3.76 4.39 3.99 | | MW-22-DUP | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18
3-Jun-15
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17
12-Sep-17
21-May-18
5-Nov-18
21-Sep-16
3-Jun-15
1-Dec-15 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <2.00 <2.00 <2.10 <1.00 <1.00 <2.00 <2.00 <2.00 <1.00 <1.00 <1.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 | 3.85 U U U U 0.06 10.13 U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 U <0.138 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008
1 | 596 584 69.9 29.3 12,500 E 648 523 74.2 <5.00 U <0.157 U <0.100 U <1.00 | 6.15 6.02 0.72 0.30 6.129 6.68 5.39 0.77 J | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 < 5.00 U 2.00 U 1.00 U 1.00 U 1.00 U 2.00 | 0.089 0.087 0.101 0.041 0.811 0.106 0.083 0.107 J | 173 122 10 675 165 170 128 <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 | 64 110 7 17.6 101 71 100.0 NA <0.324 U <0.324 U <0.398 U <0.398 U <0.398 U <1.00 U <1.00 U <1.100 U NA 1.19 J | 2.27 3.92 0.26 0.627 3.60 2.51 3.57 0.042 | 107
130
75
1.82
113
132
120
NA
<0.303
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573 | U
U
U
U
U
U
U | 3.56 4.32 2.49 0.061 3.76 4.39 3.99 | | MW-22-DUP | 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 6-Nov-18 21-Apr-16 21-Feb-17 12-Sep-17 22-May-18 3-Jun-15 1-Dec-15 20-Apr-16 21-Sep-17 21-May-18 21-Sep-17 21-May-18 21-Sep-16 20-Feb-17 12-Sep-17 21-May-18 21-Sep-16 3-Jun-15 1-Dec-15 20-Apr-16 3-Jun-15 1-Dec-15 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <2.00 <2.00 <2.00 <1.00 <1.00 <1.00 <2.00 <2.00 <2.00 <2.00 <2.00 <3.333 <3.00 <4.00 <4.00 <3.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 < | 3.85 U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 <1.00 U <1.00 U <2.00 | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008
1 | 596 584 69.9 29.3 12,500 E 648 523 74.2 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <2.00 U <2.00 U | 6.15 6.02 0.72 0.30 129 6.68 5.39 0.77 1
1 - | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 U <1.00 U <2.00 | 0.089 0.087 0.101 0.041 0.811 0.106 0.083 0.107 J | 173 122 10 675 165 170 128 <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 | 64 110 7 17.6 101 71 100.0 NA <0.324 U <0.324 U <0.398 U <0.398 U <0.398 U <1.00 U <1.00 U <0.398 U <1.10 U <1.10 U <0.398 U <0.398 U <1.00 U <0.398 U <1.00 U <0.398 U <1.00 U <0.398 U <0.398 U <1.00 U <0.398 | 2.27 3.92 0.26 0.627 3.60 2.51 3.57 0.042 0.016 | 107
130
75
1.82
113
132
120
NA
<0.303
<0.303
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.303
<0.303
<0.303
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.573
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574
<0.574 | U U U U U U U U U U U U U U U U U U U | 3.56 4.32 2.49 0.061 3.76 4.39 3.99 | | MW-22-DUP MW-23 MW-23-DUP | 21-Apr-16
21-Sep-16
21-Feb-17
12-Sep-17
12-Sep-17
22-May-18
6-Nov-18
21-Apr-16
21-Feb-17
12-Sep-17
22-May-18
3-Jun-15
1-Dec-15
20-Apr-16
21-Sep-16
20-Feb-17
12-Sep-17
21-May-18
5-Nov-18
21-Sep-16
3-Jun-15
1-Dec-15
20-Apr-16
21-Sep-16
21-Sep-17 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <2.00 <2.00 <2.00 <1.00 1.80 1.40 <2.00 <2.00 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 | 3.85 U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 U <0.138 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U <1.00 | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008
1 | 596 584 69.9 29.3 12,500 E 648 523 74.2 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 | 6.15 6.02 0.72 0.30 6.129 6.68 5.39 0.77 J | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 < | 0.089 0.087 0.081 0.081 0.041 0.811 0.106 0.083 0.107 J | 173 122 10 675 165 170 128 <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 | 64 110 7 17.6 101 71 100.0 NA <0.324 U <0.398 U <0.398 U <0.398 U <1.00 U <1.00 U <1.00 U <0.398 U <1.01 U <0.398 | 2.27 3.92 0.26 0.627 3.60 2.51 3.57 0.042 0.016 | 107 130 155 1.82 113 132 120 NA <0.303 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 | | 3.56 4.32 2.49 0.061 3.76 4.39 3.99 | | MW-22-DUP MW-23 MW-23-DUP | 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 6-Nov-18 21-Apr-16 21-Feb-17 12-Sep-17 22-May-18 3-Jun-15 1-Dec-15 20-Apr-16 21-Sep-16 21-Sep-17 21-May-18 5-Nov-18 21-Sep-16 3-Jun-15 1-Dec-15 20-Apr-16 21-Feb-17 12-Sep-17 21-May-18 5-Nov-18 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <2.00 <2.00 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 | 3.85 U | <2.00 U 1.50 6.50 1.00 2.70 336 1.80 6.40 1.00 <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <1.00 | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008
1 | 596 584 69.9 29.3 12,500 E 648 523 74.2 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 | 6.15 6.02 0.72 0.30 129 6.68 5.39 0.77 1 - | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 <5.00 U <2.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 U <1.00 U <2.00 U <1.00 U <1.00 U <2.00 U <1.00 | 0.089 0.087 0.101 0.041 0.811 0.106 0.083 0.107 J | 173 122 10 675 165 170
128 <2.00 U <2.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <1.00 | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 | 64 110 7 17.6 101 71 100.0 NA <0.324 U <0.324 U <0.398 U <0.398 U <0.398 U <1.00 U <1.00 U <1.00 U <0.398 <0.398 U <0.398 U <0.398 U <0.398 U <0.443 J <0.398 U <0.443 <0.444 U U U U U U U U U U U U U U U U U | 2.27 3.92 0.26 0.627 3.60 2.51 3.57 0.016 | 107 130 152 113 132 120 NA <0.303 <0.303 <0.573 <0.573 <0.573 <0.573 NA <0.303 <0.303 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 | U U U U U U U U U U U U U U U U U U U | 3.56 4.32 2.49 0.061 3.76 4.39 3.99 | | MW-22-DUP MW-23 MW-23-DUP | 21-Apr-16 21-Sep-16 21-Feb-17 12-Sep-17 22-May-18 6-Nov-18 21-Apr-16 21-Feb-17 12-Sep-17 12-Sep-17 12-Sep-17 12-Sep-17 12-Sep-17 12-Sep-16 21-Sep-16 21-Sep-16 3-Jun-15 1-Dec-15 20-Apr-16 21-Sep-16 3-Jun-15 1-Dec-15 20-Apr-16 21-Sep-16 21-Sep-17 22-May-18 | 639 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <2.00 <0.333 2.10 2.70 <1.00 1.80 1.40 <2.00 <2.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 | 3.85 U | <2.00 U 1.50 1.50 1.00 2.70 336 1.80 6.40 1.00 <5.00 U <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 <2.00 U <1.00 < | 0.011
0.049
0.008
0.021
2.56
0.014
0.049
0.008
1 | 596 584 69.9 29.3 12,500 E 648 523 74.2 <5.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 | 6.15 6.02 0.72 0.30 6.18 6.68 6.68 6.77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 8.50 8.3 9.7 3.90 77.8 10.2 8.0 10.30 <5.00 U <0.192 U <1.00 U <1.00 U <1.00 U <2.00 U <2.00 U <1.00 | 0.089 0.087 0.101 0.041 0.106 0.083 0.107 J | 173 122 10 675 165 170 128 <2.00 U <2.00 U <1.00 U <1.00 U <1.00 U <2.00 U <1.00 | 2.77 1.95 0.16 10.8 2.64 2.72 2.05 | 64 110 7 17.6 101 71 100.0 NA <0.324 U <0.324 U <0.398 U <0.398 U <1.00 U <1.00 U <1.00 U <0.398 U <1.01 U <0.398 U <1.02 U <1.00 U <0.398 U <0.398 U <0.398 U <1.00 U <0.398 U 0.413 U 0.443 J 0.443 J 0.398 U <0.398 U | 2.27 3.92 0.26 0.627 3.60 2.51 3.57 0.042 0.016 | 107 130 130 75 1.82 113 132 120 NA <0.303 <0.303 <0.573 <0.573 <0.573 <0.573 NA <0.303 <0.303 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 <0.573 | U U U U U U U U U U U U U U U U U U U | 3.56 4.32 2.49 0.061 3.76 4.39 3.99 | NOTES: * = Exceeds acceptable limits. DCE = Dichloroethene. E = Result exceeded calibration range. F1 = MS and/or MSD Recovery is outside acceptance limits. F2 = MS/MSD RPD exceeds control limits. J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. P = The %RPD between the primary and confirmation column/detector is >40%. The higher value has been reported. MDL = Method Detection Limit. µg/L = Micrograms per liter. µM/L = Micrograms per liter. µW-25 was dry during the pre-injection sampling event and was not sampled. MS/MSD = Matrix Spike/Matrix Spike Duplicate. NS = Not Sampled. PCE = Tetrachloroethene. RPD = Relative Percent Difference. RL = Reporting Limit. TCE = Trichloroethene. U = Indicates the analyte was analyzed for but not detected. Jones Road Ground Water Plume Superfund Site Harris County, Texas ### TABLE 6A. - SUMMARY OF INJECTION MECHANICS (Initial Injection) | Well Identification | Date of Injection | Start Time | End Time | Batch Number | Volume of EHC®-L mixture (gal) | Volume of Water (gal) | Total Volume Injected (cal) | Injection Rate (gpm) | Injection Pressure (psi) | |--|---|---|--|--------------|---|---|--|---|--| | P-01 | 1/29/2016 | 15:18 | 16:35 | Batch Number | 100 | 400 | 505 | 7 | 70 | | P-02 | 1/30/2016 | 10:04 | 11:16 | | 100 | 400 | 505 | 7 | 70 | | P-03 | 1/29/2016 | 13:50 | 15:07 | | 100 | 400 | 505 | 7 | 70 | | P-04 | 1/29/2016 | 16:05 | 17:17 | | 100 | 400 | 505 | 7 | 80 | | P-05 | 1/29/2016 | 13:13 | 14:25 | | 100 | 400 | 505 | 7 | 80 | | | | 8:30 | 8:33 | | 4 | 16 | 20 | 7 | 70 | | P-06 | 1/29/2016 | 8:40 | 8:44 | | 10 | 40 | 50 | 5 | 50 | | P-07 | 1/29/2016 | 9:53 | 12:14 | | 186 | 745 | 940 | 7 | 75 | | | | 13:20 | 14:15 | | 65 | 259 | 327 | 7 | 75 | | P-08 | 1/29/2016 | 14:15 | 14:54 | | 35 | 141 | 178 | 5 | 65 | | P-09 | 1/29/2016 | 8:20 | 9:31 | | 100 | 400 | 505 | 7 | 65 | | | | 13:45 | 14:15 | | 37 | 148 | 187 | 7 | 80 | | P-10 | 1/29/2016 | 14:15 | 15:26 | | 63 | 252 | 318 | 5 | 75 | | P-11 | 1/29/2016 | 14:35 | 15:56 | | 100 | 400 | 505 | 7 | 75 | | P-12 | 1/29/2016 | 15:45 | 16:58 | | 100 | 400 | 505 | 7 | 75 | | P-13 | 1/30/2016 | 9:25 | 10:43 | | 100 | 400 | 505 | 7 | 75 | | P-14 | 1/28/2016 | 8:45 | 9:59 | A | 100 | 400 | 505 | 7 | 95 | | P-15 | 1/28/2016 | 10:10 | 11:30 | | 100 | 400 | 505 | 7 | 75 | | | | 13:00 | 13:02 | | 0 | 0 | 0 | 0 | 0 | | P-16 | 1/28/2016 | 16:20 | 17:38 | | 100 | 400 | 505 | 7 | 60 | | P-17 | 1/28/2016 | 8:45 | 10:03 | | 100 | 400 | 505 | 7 | 65 | | P-18 | 1/28/2016 | 12:40 | 13:52 | | 100 | 400 | 505 | 7 | 75 | | P-19 | 1/29/2016 | 8:15 | 9:28 | | 100 | 400 | 505 | 7 | 70 | | P-20 | 1/28/2016 | 10:08 | 11:23 | | 100 | 400 | 505.0 | 7 | 60 | | P-21 | 1/30/2016 | 9:22 | 10:35 | | 100 | 400 | 505 | 7 | 95 | | P-22 | 1/30/2016 | 10:06 | 11:18 | | 100 | 400 | 505 | 7 | 70 | | | | 9:36 | 10:03 | | 39 | 156 | 197 | 7 | 70 | | P-23 | 1/28/2016 | 10:03 | 11:13 | | 61 | 244 | 308 | 5 | 65 | | P-24 | 1/28/2016 | 16:10 | 17:28 | | 100 | 400 | 505 | 7 | 70 | | P-25 | 1/28/2016 | 13:41 | 14:50 | | 100 | 400 | 505 | 7 | 65 | | P-26 | 1/29/2016 | 9:00 | 10:21 | | 100 | 400 | 505 | 7 | 65 | | P-27 | 1/29/2016 | 8:25 | 9:35 | | 100 | 400 | 505 | 7 | 70 | | P-28 | 1/28/2016 | 9:27 | 10:43 | | 100 | 400 | 505 | 7 | 80 | | P-29 | 1/27/2016 | 15:30 | 17:45 | | 100 | 850 | 955 | 7 | 65 | | P-30 | 1/30/2016 | 12:45 | 15:15 | | 100 | 850 | 955 | 7 | 75 | | P-31 | 1/27/2016 | 14:50 | 17:06 | | 100 | 850 | 955 | 7 | 60 | | P-32 | 1/30/2016 | 13:15 | 15:42 | | 100 | 850 | 955 | 7 | 80 | | P-33 | 1/27/2016 | 10:10 | 12:15 | | 100 | 850 | 955 | 7 | 60 | | P-34 | 1/27/2016 | 10:40 | 12:53 | В | 100 | 850 | 955 | 7 | 70 | | P-35 | 1/30/2016 | 12:43 | 15:11 | | 100 | 850 | 955 | 7 | 90 | | P-36 | 1/30/2016 | 13:09 | 15:35 | | 100 | 850 | 955 | 7 | 70 | | P-37 | 1/31/2016 | 8:35 | 10:58 | | 100 | 850 | 955 | 7 | 80 | | P-38 | 1/31/2016 | 8:00 | 10:25 | | 100 | 850 | 955 | 7 | 70 | | P-39 | 1/26/2016 | 15:45 | 18:17 | | 100 | 850 | 955 | 5.5 | 80 | | P-40 | 2/1/2016 | 8:05 | 10:31 | | 100 | 850 | 955 | 7 | 70 | | P-41 | 1/26/2016 | 15:29 | 17:45 | | 100 | 850 | 955 | 7 | 50 | | P-42 | 1/31/2016 | 12:15 | 14:28 | | 100 | 850 | 955 | 7 | 65 | | P-43 | 1/26/2016 | 15:00 | 17:22 | | 100 | 850 | 955 | 7 | 10 | | 1 13 | 1/20/2010 | 12:50 | 15:16 | | 163 | 850 | 1033 | 7 | 70 | | P-44 | 2/1/2016 | 15:30 | 17:30 | | 103 | 830 | 840 | 7 | 70 | | | 1 | 12:45 | 15:11 | | 163 | 850 | 1033 | 7 | 65 | | P-45 | 2/1/2016 | | | | | | 630 | 7 | 65 | | P-46 | 2/1/2016 | 15:30
8:15 | 17:00 | | | | | | | | P-46
P-47 | 2/1/2016 | . x.ı. | 10.40 | | | 050 | 055 | 7 | 70 | | | 1/21/2017 | | 10:42 | | 100 | 850
850 | 955
955 | 7 | 70 | | | 1/31/2016 | 11:50 | 14:09 | | 100 | 850 | 955 | 7 | 70 | | P-48 | 1/27/2016 | 11:50
14:00 | 14:09
16:22 | | 100
100 | 850
850 | 955
955 | 7 | 70
50 | | | | 11:50
14:00
8:10 | 14:09
16:22
10:37 | | 100
100
100 | 850
850
850 | 955
955
955 | 7
7
7 | 70
50
75 | | P-48 | 1/27/2016 | 11:50
14:00
8:10
12:40 | 14:09
16:22
10:37
15:06 | | 100
100
100
100
163 | 850
850
850
850 | 955
955
955
1033 | 7
7
7
7 |
70
50
75
60 | | P-48
P-49
P-50 | 1/27/2016
2/1/2016
2/1/2016 | 11:50
14:00
8:10
12:40
15:30 | 14:09
16:22
10:37
15:06
17:00 | | 100
100
100
100
163 | 850
850
850
850 | 955
955
955
1033
630 | 7
7
7
7
7 | 70
50
75
60 | | P-48
P-49
P-50
P-51 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016 | 11:50
14:00
8:10
12:40
15:30
12:17 | 14:09
16:22
10:37
15:06
17:00
14:30 | | 100
100
100
163

100 | 850
850
850
850
850

850 | 955
955
955
1033
630
955 | 7
7
7
7
7 | 70
50
75
60
60
65 | | P-48
P-49
P-50 | 1/27/2016
2/1/2016
2/1/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52 | В | 100
100
100
163

100 | 850
850
850
850

850
850 | 955
955
955
1033
630
955 | 7
7
7
7
7
7 | 70
50
75
60
60
65 | | P-48
P-49
P-50
P-51
P-52 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30 | В | 100
100
100
163

100
100 | 850
850
850
850

850
850
267 | 955
955
955
1033
630
955
955
955 | 7
7
7
7
7
7
7
7
5 | 70
50
75
60
60
65
65 | | P-48 P-49 P-50 P-51 P-52 P-53 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12 | В | 100
100
100
163

100
100
31
69 | 850
850
850
850

850
850
267
583 | 955
955
955
1033
630
955
955
300
655 | 7
7
7
7
7
7
7
7
5
6.5 | 70
50
75
60
60
65
65
50
55 | | P-48
P-49
P-50
P-51
P-52 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12 | В | 100
100
100
163

100
100
31
69
100 | 850
850
850
850

850
850
267
583
850 | 955
955
955
1033
630
955
955
300
655
955 | 7
7
7
7
7
7
7
7
5
6.5 | 70
50
75
60
60
65
65
50
55
65 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 | 1/27/2016
2/1/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
2/1/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30 | В | 100 100 100 163 100 100 100 31 69 100 70 | 850
850
850
850

850
850
267
583
850
596 | 955
955
955
1033
630
955
955
300
655
955
670 | 7
7
7
7
7
7
7
7
5
6.5 | 70
50
75
60
60
65
65
50
55
65
55 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
2/1/2016
1/26/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18 | В | 100 100 100 163 100 100 100 31 69 100 70 30 | 850
850
850
850

850
850
267
583
850
596 | 955
955
955
1033
630
955
955
300
655
955
670
285 | 7
7
7
7
7
7
7
7
5
6.5
7 | 70
50
75
60
60
65
65
50
55
65
57
70 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 | 1/27/2016
2/1/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
2/1/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30 | В | 100 100 100 100 163 100 100 31 69 100 70 30 | 850
850
850
850

850
850
267
583
850
596
254 | 955
955
955
1033
630
955
955
300
655
955
670
285
955 | 7
7
7
7
7
7
7
5
6.5
7 | 70
50
75
60
60
65
65
50
55
65
57
70 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
2/1/2016
1/26/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18 | В | 100 100 100 163 100 100 100 31 69 100 70 30 | 850
850
850
850

850
850
267
583
850
596 | 955
955
955
1033
630
955
955
300
655
955
670
285
955 | 7
7
7
7
7
7
7
7
5
6.5
7 | 70
50
75
60
60
65
65
50
55
65
55
70
70
60 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
2/1/2016
1/26/2016
1/31/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53 | В | 100 100 100 100 163 100 100 31 69 100 70 30 | 850
850
850
850

850
850
267
583
850
596
254 | 955
955
955
1033
630
955
955
300
655
955
670
285
955
955 | 7
7
7
7
7
7
7
5
6.5
7 | 70
50
75
60
60
65
65
50
55
65
57
70 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 P-56 P-57 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
2/1/2016
1/26/2016
1/31/2016
1/26/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30
14:36 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53
17:16 | В | 100 100 100 100 163 100 100 31 69 100 70 30 100 | 850
850
850
850

850
850
267
583
850
596
254
850
850 | 955
955
955
1033
630
955
955
300
655
955
670
285
955 | 7
7
7
7
7
7
7
7
5
6.5
7
5 | 70
50
75
60
60
65
65
50
55
65
55
70
70
60 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 P-56 P-57 P-58 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
1/26/2016
1/31/2016
1/26/2016
1/31/2016
1/31/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30
14:36
11:45 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53
17:16
14:06 | В | 100 100 100 100 163 100 100 100 31 69 100 70 30 100 100 100 | 850
850
850
850

850
850
267
583
850
596
254
850
850
850 | 955
955
955
1033
630
955
955
300
655
955
670
285
955
955 | 7 7 7 7 7 7 7 7 7 5 6.5 7 7 7 7 7 7 7 | 70
50
75
60
60
65
65
50
55
65
57
70
70
60
75 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 P-56 P-57 P-58 P-59 P-60 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
1/26/2016
1/26/2016
1/31/2016
1/26/2016
1/31/2016
1/27/2016
1/27/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30
14:36
11:45
13:53 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53
17:16
14:06
16:15 | В | 100 100 100 100 163 100 100 100 31 69 100 70 30 100 100 100 100 | 850
850
850
850
850
850
850
267
583
850
596
254
850
850
850
850 | 955
955
955
1033
630
955
955
300
655
955
670
285
955
955
955 | 7 7 7 7 7 7 7 7 7 5 6.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 70
50
75
60
60
65
65
50
55
65
57
70
70
60
75
80
80 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 P-56 P-57 P-58 P-59 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
2/1/2016
1/26/2016
1/31/2016
1/26/2016
1/31/2016
1/31/2016
1/27/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30
14:36
11:45
13:53
9:30
11:00 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53
17:16
14:06
16:15
11:47
11:30 | В | 100 100 100 100 163 100 100 100 31 69 100 70 30 100 100 100 100 100 100 100 100 | 850
850
850
850
850

850
850
267
583
850
596
254
850
850
850
850 | 955
955
955
1033
630
955
955
300
655
955
670
285
955
955
955
955
955 | 7 7 7 7 7 7 7 7 7 5 6.5 7 7 7 7 7 7 5 5 7 7 7 7 7 7 7 7 7 7 7 | 70
50
75
60
60
65
65
50
55
65
57
70
70
60
75
80 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 P-56 P-57 P-58 P-59 P-60 P-61 |
1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
1/26/2016
1/26/2016
1/31/2016
1/31/2016
1/27/2016
1/27/2016
1/27/2016
1/27/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30
14:36
11:45
13:53
9:30
11:00
11:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53
17:16
14:06
16:15
11:47
11:30
13:37 | В | 100 100 100 100 163 100 100 100 31 69 100 70 30 100 100 100 100 100 100 100 100 100 | 850
850
850
850
850
850
850
267
583
850
596
254
850
850
850
850
850 | 955 955 955 955 1033 630 955 955 300 655 955 670 285 955 955 955 955 955 955 955 955 955 9 | 7 7 7 7 7 7 7 7 7 5 6.5 7 7 7 7 7 7 7 7 7 7 7 7 7 | 70 50 75 60 60 65 65 50 55 70 70 60 75 80 80 55 60 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 P-56 P-57 P-58 P-59 P-60 P-61 P-62 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
1/26/2016
1/26/2016
1/31/2016
1/26/2016
1/31/2016
1/27/2016
1/27/2016
1/27/2016
1/26/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30
14:36
11:45
13:53
9:30
11:00
11:30
7:57 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53
17:16
14:06
16:15
11:47
11:30
13:37
10:22 | В | 100 100 100 100 163 100 100 100 31 69 100 70 30 100 100 100 100 100 100 100 16 84 | 850
850
850
850
850
850
850
267
583
850
596
254
850
850
850
850
850
850
850 | 955 955 955 955 1033 630 955 955 955 300 655 955 670 285 955 955 955 955 955 955 955 955 955 9 | 7 7 7 7 7 7 7 7 7 5 6.5 7 7 7 7 7 5 6.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 70 50 75 60 60 60 65 55 55 70 70 60 75 80 80 55 60 70 | | P-48 P-49 P-50 P-51 P-52 P-53 P-54 P-55 P-56 P-57 P-58 P-59 P-60 P-61 | 1/27/2016
2/1/2016
2/1/2016
1/31/2016
1/27/2016
1/26/2016
1/26/2016
1/26/2016
1/31/2016
1/31/2016
1/27/2016
1/27/2016
1/27/2016
1/27/2016 | 11:50
14:00
8:10
12:40
15:30
12:17
9:35
10:40
11:30
8:00
9:30
11:30
8:30
14:36
11:45
13:53
9:30
11:00
11:30 | 14:09
16:22
10:37
15:06
17:00
14:30
11:52
11:30
13:12
10:26
11:30
12:18
10:53
17:16
14:06
16:15
11:47
11:30
13:37 | В | 100 100 100 100 163 100 100 100 31 69 100 70 30 100 100 100 100 100 100 100 100 100 | 850
850
850
850
850
850
850
267
583
850
596
254
850
850
850
850
850 | 955 955 955 955 1033 630 955 955 300 655 955 670 285 955 955 955 955 955 955 955 955 955 9 | 7 7 7 7 7 7 7 7 7 5 6.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 70 50 75 60 60 65 65 55 65 70 70 60 75 80 80 55 60 | gal = Gallons. gpm = Gallons per minute. psi = Pounds per square inch. EA Engineering, Science, and Technology, Inc. PBC EA Project No. 14342.129 Revision: 01 # **TABLE 6B. - SUMMARY OF INJECTION MECHANICS (Hot Spot Treatment)** | Well Identification | Date of Injection | Start Time | End Time | EHC®-L mixture (lbs) | Volume of Water (gal) | Total Volume Injected (gal) | Injection Rate (gpm) | Injection Pressure (psi) | |---------------------|-------------------|------------|----------|----------------------|-----------------------|-----------------------------|----------------------|--------------------------| | IP-01 | 3/27/2018 | 8:09 | 11:30 | 37.50 | 679 | 755 | 9.13 | 75 | | IP-02 | 3/27/2018 | 8:10 | 11:20 | 37.50 | 679 | 754 | 9.8 | 70 | | IP-03 | 3/27/2018 | 8:11 | 12:47 | 37.50 | 679 | 754 | 6.45 | 75 | | IP-04 | 3/27/2018 | 8:11 | 12:55 | 37.50 | 679 | 754 | 6.01 | 92 | | IP-05 | 3/27/2018 | 10:08 | 15:48 | 37.50 | 302 | 377 | 1.78 | 160 | | IP-06 | 3/27/2018 | 10:08 | 11:47 | 37.50 | 302 | 378 | 6.35 | 60 | | P-07 | 3/27/2018 | 10:08 | 11:10 | 37.50 | 302 | 377 | 8.5 | 50 | | P-08 | 3/27/2018 | 11:30 | 13:30 | 37.50 | 302 | 377 | 0.96 | 100 | | P-09 | 3/27/2018 | 12:12 | 13:48 | 37.50 | 302 | 377 | 3.4 | 105 | | P-10 | 3/27/2018 | 14:00 | 14:41 | 37.50 | 302 | 377 | 8.45 | 70 | NOTES: gal = Gallons. gpm = Gallons per minute. psi = Pounds per square inch. $\rm EA$ Engineering, Science, and Technology, Inc. PBC TABLE 7. FIELD MEASUREMENT INDICATORS FOR REDUCTIVE DECHLORINATION | Sample Location/Well ID | Sample Date | pН | Dissolved Oxygen | ORP | Temperature | Methane | Nitrate Nitrite as N | Total Organic Carb | |-------------------------|------------------------|------------|--------------------------|----------------|-------------|------------|----------------------|--------------------| | avorable for RDC: | | 5 < pH < 9 | < 0.5 mg/L | <-100 mV | > 20 °C | < 0.5 μg/L | < 1 mg/L | > 20 mg/L | | | 3-Dec-15
22-Apr-16 | <u> </u> | 2FI | | <u>↑</u> | 4 | + | 1 | | | 20-Sep-16 | 1 | Ψ | † | | 4 | 1 | • | | MW-01 | 23-Feb-17 | ↑ | ↑ | 1 | <u>+</u> | + | ↑ | * | | | 13-Sep-17
24-May-18 | 1 | Ť | т
• | <u>T</u> | + | <u>T</u> | Ŧ | | | 7-Nov-18 | 1 | 1 | ↑ | 1 | 4 | 1 | • | | | 20-Sep-16
23-Feb-17 | | | | | + | 1 | <u>↑</u> | | | 13-Sep-17 | | | | | ¥ | 1 | * | | | 24-May-18 | | | | | .₩. | 1 | • | | MW-01-DUP | 7-Nov-18 | 1 | . | • | • | + | 1 | . | | | 3-Dec-15
22-Apr-16 | <u>ተ</u> | * | * | <u> </u> | Ψ.
Ψ | + | + | | | 20-Sep-16 | + | Ψ. | 3 9 | 1 | • | 1 | 1 | | MW-02 | 23-Feb-17 | 1 | ↑ | N | ↑ | Ψ. | 1 | * | | | 13-Sep-17
23-May-18 | <u>ተ</u> | ↑ | 2 7 | <u>↑</u> | + | <u>↑</u> | + | | | 7-Nov-18 | 4 | ^ | त्र | 1 | 4 | • | • | | | 3-Dec-15 | | | | | • | • | * | | MW-02-DUP | 22-Apr-16
23-May-18 | | | | | + | <u>^</u> | <u>↑</u> | | | 3-Dec-15 | 1 | 3 7 | • | 1 | * | į. | • | | | 22-Apr-16 | 4 | Ψ. | Ψ. | Ť | Ψ. | • | * | | MW-03 | 21-Sep-16
22-Feb-17 | → | + | 4 | <u> </u> | + | + | + | | IVI W -03 | 12-Sep-17 | 1 | 1 | Ψ | 1 | ¥. | 1 | * | | | 22-May-18 | 4 | • | ঙ্গ | | Ψ. | | • | | | 6-Nov-18 | 1 | <i>5</i> 1
<i>3</i> 1 | <i>5</i> 1 | 1 | 4 | 1 | + | | | 2-Dec-15
21-Apr-16 | ተ | 小 | ↑ | <u> </u> | + | 1 | * | | | 22-Sep-16 | + | • | Ψ. | 4 | 4 | 1 | + | | MW-04 | 22-Feb-17 | 4 | 1 | <i>3</i> 7 | 1 | Ψ | 1 | • | | | 12-Sep-17
23-May-18 | † | ↑ | 2 9 | <u> </u> | + | T | + | | | 6-Nov-18 | 1 | 1 | т
• | <u>T</u> | * | 1 | * | | | 2-Dec-15 | 1 | N | N | 1 | Ψ. | Ψ. | Ψ. | | | 21-Apr-16 | 1 | ↑ | 4 | 1 | + | 1 | ↑ | | MW-05 | 21-Sep-16
22-Feb-17 | + | * | * | <u>↑</u> | 4 | ↑ | * | | 05 | 13-Sep-17 | 4 | 271 | • | 个 | Ψ. | • | Ψ. | | | 21-May-18 | 4 | . | N | <u> </u> | Ψ. | • | . | | | 5-Nov-18
1-Dec-15 | <u> </u> | | <u>ज्ञ</u> | <u>↑</u> | 4 | <u>↑</u> | + | | | 21-Apr-16 | 1 | <u> </u> | <i>5</i> 7 | <u></u> | ¥ | 1 | 1 | | | 21-Sep-16 | | | | | .₩ | 1 | 1 | | MW-06 | 21-Feb-17 | | | | | + | 1 | ↑ | | | 11-Sep-17
22-May-18 | | | | | ¥. | T | - | | | 6-Nov-18 | | | | | 4 | 4 | 4 | | | 1-Dec-15 | | | | | Ψ. | 1 | * | | | 20-Apr-16
21-Sep-16 | | | | | 1 | + | + | | | 20-Feb-17 | | | | | • | 1 | • | | | 11-Sep-17 | | | | | + | 1 | + | | MW 07 | 22-May-18 | | | | | | <u> </u> | + | | MW-07
MW-07-DUP | 5-Nov-18
1-Dec-15 | | | | | | 1 | * | | ** | 2-Dec-15 | 1 | N | 1 | 1 | .₩. | 1 | 1 | | | 19-Apr-16 | ↑ | ↑ | 3 ₹ | <u> </u> | + | <u>↑</u> | +++ | | | 20-Sep-16
21-Feb-17 | 1 | T | - 1 | 1 | 4 | 1 | - | | | 13-Sep-17 | 1 | ^ | Ψ. | 1 | 4 | 1 | + | | MW-08 | 24-May-18 | | | | | Ψ. | 1 | • | | | 2-Dec-15
21-Apr-16 | <u>ተ</u> | + | + | <u>↑</u> | 1 | + | + | | | 22-Sep-16 | * | į. | <u> </u> | 1 | 1 | • | į. | | | 23-Feb-17 | • | <i>3</i> 7 | + | 1 | 1 | • | + | | | 12-Sep-17
24-May-18 | <u>↑</u> | Я
Я | হয়
হয় | <u>↑</u> | 1 | + | + | | MW-09 | 5-Nov-18 | 1 | 1 | 57 | 1 | * | * | Ť. | | ** | 2-Dec-15 | | | | | Ψ. | 1 | Ψ. | | | 22-Apr-16 | 1 | ↑ | 3N
3N | 1 | + | 1 | + | | | 22-Sep-16
21-Feb-17 | <u>ተ</u> | 1 | 3N | <u> </u> | 4 | <u>↑</u> | ↑ | | | 12-Sep-17 | 1 | 1 | 3 7 | 1 | Ψ | 1 | + | | | 24-May-18 | | | | | Ψ. | | 1 | | MW-20 | 6-Nov-18
1-Dec-15 | 1 |
37 | - | | 4 | <u>↑</u> | + | | | 1-Dec-15
22-Apr-16 | * | ተ | Ψ. | 4 | Ψ. | • | Ψ. | | | 22-Sep-16 | ^ | Ψ | • | 1 | Ψ. | + | . | | | 22-Feb-17
13-Sep-17 | 介 | <u>ተ</u> | ्रज्ञ
ज्ञ | <u> </u> | + | * | + | | | 23-May-18 | | | | <u>T</u> | ¥ | T | Ţ. | | MW-21 | 7-Nov-18 | 4 | 1 | ঞ | 1 | Ψ | + | + | | | 30-Nov-15 | 1 | <i>₹</i> 7 | , ₩, | <u>↑</u> | + | + | + | | | 21-Apr-16
21-Sep-16 | <u>^</u> | T | | т
 | 4 | 小 | + | | | 21-Feb-17 | | | | | Ψ. | 1 | Ψ. | | | 12-Sep-17 | 4 | * | 39 | 个 | 4 | 1 | Ψ | | MW-22 | 22-May-18
6-Nov-18 | | | | | + | <u>↑</u> | + | | 1V1 VV - ∠ ∠ | 21-Apr-16 | | | | | 4 | 1 | <u> </u> | | | 21-Feb-17 | | | | | + | 1 | + | | MW 22 DID | 12-Sep-17 | | | | | + | <u>^</u> | ++ | | MW-22-DUP | 22-May-18
1-Dec-15 | <u></u> | | <u></u> | <u>+</u> | 1 | T | + | | | 20-Apr-16 | 4 | † | Ψ. | 1 | 1 | 1 | + | | | 21-Sep-16 | + | Ψ | • | 1 | 1 | • | Ψ. | | | 20-Feb-17 | 1 | ↑ | 57I
57I | 1 | 1 | ++ | ++ | | | 12-Sep-17
21-May-18 | | 31
31 | 37
37 | <u> </u> | т
• | * | * | | MW-23 | 5-Nov-18 | 4 | A | 39 | 1 |
4 | • | + | | | 1-Dec-15 | 1 | Ψ | Ψ | 1 | 1 | 1 | Ψ | | | 20-Apr-16
21-Sep-16 | † | ↑ | + + | 1 | + | ↑ | + | | | 21-Sep-16
21-Feb-17 | 1 | 3 7 | ¥ | 1 | 1 | * | ¥ | | F | 12-Sep-17 | 4 | <i>5</i> 1 | <i>5</i> 11 | 1 | 1 | | + | | | | 1 | 37 | 29 | 1 | + | 1 | + | | MW-24 | 21-May-18
6-Nov-18 | 4 | 4 | 3 71 | 1 | 4 | 1 | • | # ATTACHMENT A EHC-L® MANUFACTURER'S INFORMATION ## Introduction EHC[®] Liquid amendment is a cold-water soluble formulation specially designed to be emplaced via existing wells and/or hydraulic injection networks for the treatment of a wide range of groundwater contaminants. EHC Liquid is delivered as two components that are mixed together on site. The first component, a 25% liquid emulsion of foodgrade lecithin, is provided in 55-USG drums containing 50 USG of emulsion. The second component (powdered mix) is a food-grade organo-iron compound. The two components are proportioned so that 24.5 lbs of powdered mix is required for each 50 USG of liquid portion. This document provides standard operating procedures for preparation of diluted EHC Liquid for injection. #### **Packaging** #### Part 1 Liquid emulsion delivered in 55-USG drums, filled with 50 USG / 420 lbs per drum (190 L / 190 Kg) #### Part 2 Water soluble powder with the organo-iron compound in 24.5 lb bags (11.1 Kg) # **EHC Liquid Injection Volumes and Dilutions** Depending on the application method, between 10% and 100% of the <u>effective</u> porosity is normally targeted during EHC Liquid injection, with a higher percent pore fill normally targeted during low-flow injections into wells and injection networks. This is in contrast to applications via direct push technology where normally around 10 to 15% of effective porosity is targeted. To facilitate the desired injection volume, the components are diluted in the field. Table 1 shows examples of mixing recipes for a 55-USG drum of liquid component in US and metric. Table 1: EHC Liquid dilutions and corresponding concentration | Di | 3-fold | 5-fold | 10-fold | 25-fold | | | | |--|--------|--------|---------|---------|------|--|--| | Volume of emulsion per drum (USG) | | 5 | 50 | | | | | | Mass dry components (lbs) | | 24.5 | | | | | | | Volume water (USG) | | 100 | 200 | 450 | 1200 | | | | Resulting total volume (USG) | | 150 | 250 | 500 | 1250 | | | | Resulting EHC Liquid concentration (wt%) | 10.5% | 6.3% | 3.2% | 1.3% | | | | #### **MIXING GUIDELINES** | | 3-fold | 5-fold | 10-fold | 25-fold | | | | |--|--------|--------|---------|---------|------|--|--| | Volume EHC Liquid emulsion per drum (L) | 190 | | | | | | | | Mass dry components (Kg) | | 11.1 | | | | | | | Volume water (L) | | 380 | 760 | 1710 | 4560 | | | | Resulting total volume (L) | 570 | 950 | 1900 | 4750 | | | | | Resulting EHC Liquid concentration (wt%) | 10.5% | 6.3% | 3.2% | 1.3% | | | | #### **General Mixing Procedures** Proportioning can be varied to accommodate mixing tank size. The general mixing procedure is: Diluted EHC Liquid Component + Powdered Mix - Fill mixing tank with required amount of dilution water per the treatment design. - 2. Transfer EHC Liquid portion Part 1 to mixing tank. Note that this material is pre-emulsified, has a viscosity of about 3,000 – 4,000 cPs and will require an appropriate pump for transfer from the drum. Alternatively, the emulsion may be transferred in pails by hand. A paddle mixer and/or recirculation pump is sufficient for mixing. - Add in powdered mix Part 2 and continue mixing. Ensure no solids remain on bottom of tank. If other additives are used (e.g., pH buffers), they may be added at this time. 4. Mixing time depends on equipment used (typically 5-10 min). Material is to be mixed until uniform. #### **Health and Safety** EHC Liquid is safe when handled properly in accordance with instructions for use, the advisory below and the MSDS. The EHC Liquid MSDS is posted on our web site at: www.environmental.fmc.com/resource-center When working with EHC Liquid, the use of standard personal protective equipment, including safety glasses, chemically resistant boots and nitrile gloves is recommended. Dust mask may be required when in close contact with the EHC Liquid powder component (Part 2) under certain conditions. Additional safety equipment may be required for site operations. The information contained herein is, to our knowledge, true and accurate. However, we make no warranty or representation, expressed or implied, and nothing contained herein should be construed as permission or recommendation to infringe any patent. Any and all intellectual property rights to this material are retained by FMC Corporation. FMC and EHC are trademarks of FMC Corporation and its subsidiaries. Copyright© 2013 FMC Corporation. All rights reserved. Document 03-01-ESD-13 # ATTACHMENT B # LABORATORY REPORTS (on compact disc only) APPENDIX C FIELD FORMS | Sheet | of | |-------|----------| | Date: | 04/21/14 | | Well ID: | MM | S
S | Sample ID | | Подаварина выправления «« но да
Расправления постоя по почения пред | Sample Time: | 1053 | ĺ , | | Downstand | | |------------------------------------|--|--------------------|--
---|--|---|-----------------------------|---|---|--|---| | | meter/type: | | And the same of th | 1 1 And a construction of the Property of the Construction | Well locati | on: Berry | Lagger | center | | Weather: R | in Dueron | | | | 25.50. | 35.50 | | Sampling | personnel: 🕡 | WAB | · · · · · · · · · · · · · · · · · · · | | | | | Total depth | 1: | <i>35,9</i> 0 | | ************************************** | Sampling | method: Low-flo | w micropurge | | managaga ayan a sa s | | | | nitial depth | n to water (v | | <u>(e.32</u> | | Water leve | el indicator: | Huron | 711 | makerong gayang kalan | | | | | to water (v | | 6.60 | | Water qua | | | 1165 | | 4.8 | | | exportation contail was assumed as | and the same of th | th side of casi | ng
I | T | Pump dep | an manyang pang ang ang ang ang ang ang ang ang ang | gatamentament and | proceedestination (III beginning representation) | Pump : /pe/m | odel: Monso | | | 5 min | Δ < 10% | Δ < 10% | Annual September 1988 Company of the | | Δ < 0.1 pH | ************************************** | Δ < 0.3 ft | < 1L/mjn | | < 0.5 L/min | Parameter Stabilization Limits (3 consecutive readings) | | Time | Temp
(°C) | (mS/cm) or (µS/cm) | DO
(%) | DO
(mg/L) | рН | ORP
(mV) | Water Level
-(feet btoc) | Flow Rate
(L/min) or
/mL/min) | Turbidity
(NTU) | Purge
Volume
(L) or (mL) | Additional C omments | | 9 33 | 22.1 | 0.392 | 44.9 | 3.87 | 7.35 | 146.6 | 110608 | 350 | 653N | | - hereto fer bed | | 9936 | 22.1 | 0.383 | 34.6 | 3.03 | 7.69 | 143.6 | 16.97 | 500 | 78710 | | - Sloht drew down | | 0539 | 22.1 | 0.375 | 32.2 | 2.79 | 210 | 143.2 | 16.98 | 400 | 45 | | | | 0942
1945 | 222 | 0.373 | 30. <i>3</i> | 201 | 7.11 | 143 2 | 16.77 | 200 | 41 | | | | ghad a dame | | | **** 5,36 | render | 1 - A | PAIN) | | AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF | manufoldings company or a control of the control | THE PERSON NAMED IN COLUMN TWO IS NOT TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT CO | | | 1044 | 21.8 | 0.366 | 26.6 | 2.37 | 244 | 1771 | 1ce. 38 | 400 | 105 | | | | 1647 | 21.7 | 0.368 | 28.6 | 2.49 | 7.33 | 1717 | 16.75 | 150 | 93.8 | | | | 1050 | 21.8 | 6.369 | | 2.53 | 7.23 | 1019 | 16.89 | 350 | 69.3 | | | | 1053 | 22.1 | 0.374 | 27.1 | 2-35 | 77/0 | 168.4 | 14.90 | 200 | 521.3 | | | | St. dee | W . E . E . E | 9.1/9. | 504 14 1 | | 1.33 | 140. | 1,4010 | - | 75 | | | | | | | | | | | $-\lambda$ | -U | | a l | | | | | | | | | | | | \overline{a} | | | | | | | | | | | | | 1,1510 | | | | | | | | - | | | | | 10177 | | | | | ************************************** | Recorded By:_ | Sheet | (_of | |-------|----------| | Date: | 04/19/15 | | Well ID: | MN-c | 5 | Sample ID | | | Sample Time: | 1500 | | | Becaused | | |--------------|--------------|---------------------------------------|---|--|-------------|--|----------------------------
--|--|--|--| | Casing dian | neter/type: | 2'PUL | | ······································ | Well locati | on: Wood | lot | and the second s | geographicae debictor - 1 to on the | Weather: C | Proposet humed, | | Scree red in | | 10-35 | construction of the superior and the superior of | | Sampling p | personnel: 07 | Y AB | | Marketon and the control of cont | | | | Total depth. | | | - | | Sampling i | method: Low-flo | w micropurge | | AND THE PERSON OF O | and the second s | | | nitial depth | to water (v | v/o pump): 15 | 25 | | Water leve | el indicator: He | erioa | and the second s | | | | | Final depth | | | 5.30 | | Water qua | lity meter: | YSI KR | , Plus | | | | | Measuring p | ooint: Nort | th side of casi | ng | -g | Pump dep | th setting: Se | 2 | province construction and the second | Pump pe/m | odel: Mans | ioon 542" | | 5 min | Δ < 10% | ∆ < 10% | *************************************** | | Δ < 0.1 pH | omodykają je programinia pod | Δ < 0.3 ft | < 1L/min | | < 0.5 L/min | Parameter Stabilization Limits (3 consecutive readings) | | Time | Temp
(°C) | Conductivity
(mS/cm) or
(µS/cm) | DO (%) | DO
(mg/L) | рН | ORP
(mV) | Water Level
(feet bloc) | Flow Rate
(L/min) or
(mL/min) | Turbidity
(NTU) | Purge
Volume
(L) or (mL) | Additional Comments | | 1444 | 24,3 | 15.79 | 10.6 | 0.84 | 6.91 | 1309 | 15.30 | 400 | 716AU | | -under fixed ducke | | 1447 | 23.8 | 0.78 | 1.8 | 0.15 | 6.71 | 31.5 | 15.39 | 300 | 948 | | surface completion duis | | 1450 | 23. G | 0.78 | 1.0 | 0.08 | 10,69 | 16.1 | 15.30 | 200 | 655 | | surface completion duis
destroyed. Well ,5 under
13" wood deds 5, no pad | | 1453 | 25.2 | 0.0 | 0.4 | 0.03 | 6.20 | 12.7 | 15.35 | | (20) | | 13" wood dellis ind oud | | 1456 | 2/0 | 0.78 | 001 | 0.01 | | 6.2 | 15.41 |
300 | 4.0 | | | | | | | | | 271 | 75.00 | | | | | | | t | | | | | | *************************************** | hide dida (1-1) e 14 gayana aya kanangaran ana aya - 1 | | | | | | | , margament of the state | | | | | | | | | | | | | | | | | | | *************************************** | | | | | | | A | | | | | | *************************************** | | | | | | | | | | | | | | | | $2 / \Omega$ | Mel | $I = \mu$ | 199C | 0 | | | | | | | | 4 | 01.0 | | V | / | | | | | | | | | | | -0 | | 10000 | | | | | | | erenne en menge analysissassen en en en en en | Antonio Carlos C | - | Martin Man , and a separation of the contract | PI Recorded By:_ | | | 1 | |-------|----|--------| | Sheet | l | of (| | | | | | Date: | 0% | 100//6 | | - | 7 | | | Well ID | MN | -24 | Sample ID | | | Sample Time: | 1205 | | | | | |---------------------------------------|--|---------------------------------------|---|---------------------------------|-----------------------------|-----------------|----------------------------|---|--|--
--| | Casing dia | ameter/type: | 2" P | W | | Well locati | on: O'Reil | 4 6+ | | | Weather: | Pain, 76°F | | Scree ed interval(s): 35-35-1 Samplin | | | | | Sampling | personnel: P | FY AB | | | The state of s | | | Total dept | h: 53°. | <u>۵</u> | | | Sampling i | method: Low-flo | w micropurge | | | | | | Initial dept | h to water (| w/o pump): 6 | .41 | | Water leve | el indicator: 🎢 | ans 1 | | | | | | Final dept | h to water (v | w/o pump): 🎣 |), <u>}</u> { <u>6</u> | | Water qua | | | Plus | NT annual or negative 1975 annual negative | | | | promotes | The same of sa | rth side of casi | ng | garacticae consequentes and and | Pump dep | th setting: 🛴 | 2 | prov | Pump type/m | odel: Ma | 19001 2"55 | | 5 min | Δ < 10% | Δ < 10% | | | $\Delta < 0.1 \mathrm{pH}$ | | Δ < 0.3 ft | < 1L/min | Particular | < 0.5 L/min | Parameter Stabilization Fimits (3 consecutive readings) | | Time | Temp
(°C) | Conductivity
(mS/cm) or
(µS/cm) | DO
(%) | DO
(mg/L) | pН | ORP
(mV) | Water Level
(feet bloc) | Flow Rate
(L/min) or
(mL/min) | Turbidity > (NTU) | Purge
Volume
(L) or (mL) | Additional Comments | | 423.7 | 23.7 | 6.257 | 29.2 | 2.4 | 945 | 142.2 | 16.95 | 150 | 16223 | | 9.93 Col on turbulal | | 1152 | 24.4 | 0.51 | 4.4 | 3.9 | 7.51 | 1578 | 17.96 | X00° | 13/ | | - the let of second and | | 1155 | 24.4 | 0.53 | 2.9 | 2.9 | 7.11 | 152.4 | 18.19 | 180 | DS. | | - Slow returne, slight | | 1158 | 23.8 | 0.53 | 2.4 | 0.21 | 7.06e | 146.8 | 18.48 | 350 | 11 | | drue down | | 1201 | 24.4 | 0.54 | 2.5 | 02/ | 7.04 | 145.3 | 19.66e | 200 | 92.8 | | | | 1204 | 24.3 | 0.54 | 2.5 | 020 | 7.04 | 137.9 | 20.23 | 200 | 75,4 | | • | | | | | | | | | | - Allengare and | T | aran dia mpatria aranga di tambih di di dang nyaman pengangan ana man | | | | | / | Production Address No. 1997-1997 Constitution and | | | | | | | | | | | ΛA | 596 | | | | | | | | | | | April 182 | Company of | \overline{O} | ч, | | Philipping and the first first account on a country of the | | | | | | | | | | 17114 | · | <i>O</i> | | |--------------|---| | Recorded By: |
*************************************** | Sheet of of Date: Of Police | Well ID: | MW- | 3.3
 | Sample ID | | | Sample Time: | 1420 | Business and the second | | The second secon | | |---------------|---------------|------------------------------|--|--|-------------
--|----------------------------|--|--|--|---| | Casing dia | meter/type: | 2"PUC | Andrew Control of the | · - halis adi akumphi sakish massa | Well locati | ion: BFE | lot | and the second s | | Weather: K | Pain /clouds | | Scree ed | interval(s): | 150-54.4 | 2 | | Sampling | personnel: 0 | T42B | | | | | | Total depti | | 49 | | | Sampling | method: Low-flo | ow micropurge |) | open personal program or to the other program or | | | | Initial depti | h to water (v | w/o pump): 4 | 15.18 | | Water leve | el indicator: 📙 | ecion | annie als de l'Alle l'A | month a branchester (a debit of free square | | | | Final depth | to water (v | v/o pump): 4 | 15.54 | | Water qua | | YSI PIO | <i>t</i> | MFF commence was related to 10.5 Filt committee of the | | | | Measuring | point: Nort | th side of casi | ng | g | Pump dep | th setting: $5 \acute{o}$ | 2_ | | Pump 'zpe/m | odel: Nons | 1004 55 | | 5 min | Δ < 10% | Δ < 10% | MILTON STATE OF THE TH | | ∆ < 0.1 pH | onderform to the Contract of t | Δ < 0.3 ft | < 1(/min | | < 0.5 L/min | Parameter Stabilization Limits (3 consecutive readings) | | Time | Temp
(°C) | Conductivity (mS/cm) (µS/cm) | DO
(%) | DO
(mg/L) | рН | ORP
(mV) | Water Level
(feet btoc) | Flow Rate
(L/min) or
(mL/min) | Turbidity
(NTU) | Purge
Volume
(L) or (mL) | Additional Comments | | 1405 | 24.6 | 0.61 | 24.5 | 1.83 | 201 | 176.0 | 46.35 | 125 | OR | | - needer Leobal | | 1408 | 24.7 | 0.6/ | Ce. 7 | 0.55 | 6.94 | 169.0 | 46.63 | 325 | OR | | -clouder gransf | | 1411 | 25.2 | 0.62 | 46 | 0.38 | 6.93 | 159.9 | 46.99 | 250 | OR | | -cloudy orange
-likely in; action related
-slight ianual odos | | 1419 | 25.6 | 0.63 | 4.5 | 0.37 | 693 | 1523 | 47.38 | 325 | OR | | - slight jamuel oder | | | 25.6 | 0.63 | 47 | 0.38 | 6.93 | 144.0 | 47.38 | | OR | | | | | <u> </u> | 0.00 | | | | 111 | 17.50 | 2 | | | | | | | | as garage and hardward of the Part of Part of The Part Supergraphy or a specificity and | | | | | | | | | | | | | and an individual of the control | | | | | | | | | | | | | | | | | 76 | | <i> </i> | | | | | | | and produced the second sec | A company of the Control Cont | | \ | |) - Co. | w | | | | | | | | | 1 | 1 (/ | 4 | | | | | | | | | | | | | | _// |) | ./ | | | | | | | | | | | | 2554 | 1 | | | | | | | | | | | V | / | and the result of the appears and the r | | | | | | | | | | | | | | | 1 | - | NA NEW OF PROPERTY NAMED INC. | Sheet | of | 1 | |-------|------|-----| | Date: | 04/2 | 1/6 | | Well ID: | MWO | L.L | Sample ID | | | Sample Time: | <u> </u> | | | | | |-------------------|----------------|---
--|----------------------------------|---------------------------|-----------------|---|-------------------------------------|--|--------------------------------|---| | | | 2" FUC | yr
Mantalannian w 4 was 1 w 1 mantalanahanna w w | of coll account name wereholders | Well locati | on: Behand | Mekons |) | | Weather: H_{ℓ} | smid, Overast/Rais | | Scree ed | interval(s): | <u> 20-35 '</u> | conseques the source will be served to | | | | + AB | | | | | | Total deptl | n: <u>33,</u> | | | | Sampling r | method: Low-flo | w micropurge | | o Managara a company | | | | Initial dept | n to water (v | wlo pump): 10 | 1.65 | | Water leve | el indicator: 🥖 | 15/07 | | Commence and the contract of t | | | | Final depth | i to water (v | v/o pump): [3 | 46 | | Water qua | lity meter: | YSI Pro | Plus | TARREST CONTRACTOR CON | | | | Measuri ng | point: Nort | th side of casi | ng | -g-antonialsomousanssamean | Pump dept | th setting: 30 | > ^ | | Pump 'zpe/m | nodel: <i>Maga</i> | oùn 55 | | 5 min | Δ < 10% | Δ < 10% | 1-021-02-03-03-03-03-03-03-03-03-03-03-03-03-03- | | $\Delta < 0.1 \text{ pH}$ | | Δ < 0.3 ft | < 1L/min | udangan sanakara a | < 0.5 L/min | Parameter Stabilization Limits (3 consecutivé readings) | | Time | Temp
(°C) (| Conductivity
(mS/cm) or
(pS/cm) | DO
(%) | DO
(mg/L) | рН | ORP
(mV) | Water Level
(feet bloc) | Flow Rate
(L/min) or
(mUmin)> | Turbidity
(NTU) | Purge
Volume
(L) or (mL) | Additional Comments | | 0828 | 20.4 | 0.98 | 2.2 | 0.19 | 7.63 | -0.7 | 13.31 | 300 | 50.7 | | - / | | 0831 | 20.5 | 6.98 | 0.5 | 0.03 | 6.65 | -30.a | 14.01 | 300 | gipinan | - 5/es | of drew drew | | 0835 | 20.5 | 0.98 | 0.3 | 0.02 | Calda | -37,9 | 14.53 | <i>7</i> 00 | 52.1 | | | | | 20.5 | 0.98 | 0.2 | 0.00 | 6.67 | 40.4 | 15,21 | 400 | 52.0 | | - I was an | | 0441 | 80.6 | 0.98 | -0.4 | 0.00 | 6.69 | -42.0 | 15.38 | | 6. fine 2 | | | | 2.D.L. | <i>V</i> | 0.70 | | 0.00 | 8 × 96 1 | | 1-3-5-2 | | | | | | | | | | | | | | | agadenia orang sang sang sang sang sang sang sang s | | | | | | | | | | | | | a presentation and the Hilliam and | | | | | | | THE STATE OF | | | | *************************************** | | and the second s | | | | | | | edijas a pada yayani damaha di kapinjida ahasiki kamba - | | | | | | | | | | | | | MAY A TABLE VARIABLE NAMED TO BE SERVICED TO 1 | | | | | | and an annual contract of the second | 7 | | | | | | | | | | | | | 4 | | | | | | | | -(+) | -/- | 1-11 | -VU | 2/00 | 1. | | | | | | | | | | <i>y</i> | | y' | | × | | | | | | | | | - | | | | | | | | *************************************** | | | | , | | | | | 4 | | | | | | | | | ************************************** | | | | | | | | | enter and a contract of the co | | | | | | *************************************** | red to the section of | | | | | | untermination of the state t | Approximated (1-1) - 1000 to the total age | | | | | NT | |--------------|----| | Recorded By: | 50 | | Sheet_ | of | , / | |--------|--------|-----| | Date: | 04/21/ | 16 | | Well ID: | MU- | 09 | Sample ID | | and the process of the state | Sample Time: | 1305 | | | | | |---------------|---------------|------------------|--|--------------
--|-------------------|----------------------------|-------------------------------------|--|--------------------------------|--| | Casing dia | meter/type: | 2" PUC | | | Well locat | ion: Ace l | an down | wea | | Weather <i>O</i> | vercust/livet | | Scree ed | interval(s): | 20'-4 | 0 | | Sampling : | personnel: $b7$ | + AB | | | | / | | Total depti | 1: 37. | .7/ | | | Sampling | method: Low-flo | w micropurgo | | | | | | Initial depti | h to water (v | w/a pump): 20 | | | Water leve | el indicator: 🧜 | lusion | | mandawan J. Way prog. 1477 p. Lapina | | | | Final depth | to water (v | v/o pump): 2 | 4,41 | | Water qua | ility meter: | YSI Pro | Plus | | | | | Measuring | point: Nort | th side of casi | ng | | Pump dep | th setting: 3^4 | 4.0' | | Pump 'zpe/m | ndet: Man | 5001 | | 5 min | Δ < 10% | Δ < 10% | and the supplemental properties of | | Δ < 0.1 pH | | Δ < 0.3 fl | < 11./min | CONTRACTOR OF THE PROPERTY | < 0.5 L/min | Parameter Stubilization Finits (3 consecutive readings) | | Time | Temp
(°C) | (mS/cm) (rrs/cm) | DO
(%) | DO
(mg/L) | рН | ORP
(mV) | Water Level
(feet bloc) | Flow Rate
(L/min) or
Int/min) | Turbidity
(NTU) | Purge
Volume
(L) or (mL) | Additional C omments | | 1248 | 21.9 | 0.74 | 23.8 | 2.07 | 7.03 | 190.1 | 24.26 | 1210 | //٥ | | | | 1250 | 223 | 0.75 | 22.0 | 1.86 | 6.72 | 193.7 | 24.10 | 150 | 110 | | | | 1253 | 22.7 | 0.75 | 19.9 | 1.69 | 6.70 | 191.9 | 24.20 | 300 | 21 | | | | 1256 | 232 | 0.75 | 23.2 | 1.53 | 6.70 | 193.5 | 24.30 | ٥٥٥ | 21 | | | | 1259 | 23. O | 0.74 | 18.3 | 1.53 | | 196.7 | 25.00 | 500 | 68.7 | | | | 10.0 | 30.0 | <i></i> | ,0 | 1 0 - | C | 7.00. | | | 90.1 | | to Proceedings and Control of the Co | | | | | | | | | | | LANGE TO SERVICE THE SERVICE OF SERVICE THE SERVICE OF SERVICE THE SERVICE OF SERVICE THE SERVICE OF O | | • | £ | <i>30</i> 4 | | | | | | | | | -A | | A).A | \] | | | | | | and the state of t | | - Carrier Contraction | | 1 | | | | | | | | | | | Permit | | $-V_{i}$ | gl_ | particular and the second of the second of | | | | | | | | | | M | | d | | | | | | | | | | 14 | ************************************** | | | | | | | | | | | | | Constitution of the Consti | | | | | | | | | | | | | | | | | | | American sense and an experience of the sense sens | | | | | | | | | | | - | - | Recorded By: | | / | 1 | |-------|-------|-----| | Sheet | | _/ | | Date: | 64/21 | /K_ | | Well ID: | MW-C | | Sample ID | | | Sample Time: | 1430 | | Anna reconstruction of the second sec | | | |-------------|---|----------------------
--|--|-------------|--|----------------------------|--
--|--|--| | Casing dia | meter/type: | 2"PK | er transport of the control c | · · · · · · · · · · · · · · · · · · · | Well locati | on: SW 52 | lecaner | TO A A RESIDENCE AND | METANOME 1 101 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Weather C/ | loudy/Rain | | Scred ed | interval(s): | 20-35 | Marian and the second second second | | Sampling p | personnel: 07 | -1 <i>AB</i> | John Charles and John Charles and Char | Margament and a second and a second and the | t has the commencer of the codes the background contract the background. | | | Total depti | n: 35. | 16 | gentagge 17 on 1 / 2 Vision and an applicative step on state . | | Sampling r | nethod: Low-flo | w micropurga | | gir gazzani aran aran aran aran aran aran aran a | | | | | | w/o pump): | | | Water leve | el indicator: H | PETON | | and the second s | annuar ess annuar sinha che (sal dell'Albah) (sal dell'Albah) (sal dell'Albah) (sal dell'Albah) (sal dell'Albah) | | | Final depth | n to water (v | v/o pump):27 | 7.80 | | Water qua | | YSI Pio | Plos | | | and the second s | | Measuring | point: Nor | th side of casin | ng | g-communication contraction co | | th setting: 34 | | ys - american and a superior s | Pump 'zpe/m | odel: Moa | 150cn I" | | 5 min | Δ < 10% | Δ<10% | | | Δ < 0.1 pH | ON OF WHICH PROPERTY OF THE PR | ∆ < 0.3 ft | < H_/min | | < 0.5 L/min | Parameter Stabilization Lunits (3 consecutive readings) | | Time | Temp
(°C) | Conductivity (mS/cm) | DO
(%) | DO
(mg/L) | рН | ORP
(mV) | Water Level
(feet bloc) | Flow Rate
(L/min) or
(mL/min) | Turbidity
(NTU) | Purge
Volume
(L) or (mL) | Additional Comments | | 1417 | 23.6 | 0.57 | 24.3 | 1.89 | G.12 | 12.9 | 27.49 | 200 | G15BU | | - lots of inspectate in | | | 24.3 | 0.58 | 10.7 | 0.89 | 9.10 | 2.2 | 27.80 | 300 | 35000 | | - lots of injectate in | | 1423 | 25.1 | 6.53 | 6.2 | 0.51 | 6.10 | ~2.1 | 28.10 | 050 | 40-328 | 139 | -Strong odor | | | 25.2 | 6.53
0.58 | 6.2
5.1 | 7 B. D. C. | 6.10 | | 28.42 | \$50 | 111 | | -very firsted, gray,
10.38 - Turbulis Mile | | 1429 | 25.4 | 0.58 | 4.1 | 0.33 | 6.11 | -0.4 | 28.82 | 400 | 189 | | 10.38 - Turbules Moto | | | | | and the state of t | | | and and the Control of o | 2 | | | | stendard som kat | | | | | | | | ************************************** | | o o gaga y to a tanàng againmentantan'i managana againmentanta | | | should some kest show | | | | | | | | | | | | | 18 cherse | | | *************************************** | | erante en | | | | , | | AND THE PERSON OF O | | 3 | | | | | | and the second s | | . / | get p | west | | | | | | | Λ | | | | | get f | W79-21 | | | | | | | 1/4 1/0 | | a | 50 | -tau | | | | | <u>.</u> | | | | 11111 | N | -{},- | | | | | | | | | | | 1 | | | | ······································ | | | · · · · · · · · · · · · · · · · · · · | \$ | | | | | | | | | | | | V | · | | | | | | | | - | L | | | | | | L | | | | | at Recorded By: | | / | | |-------|------|------| | heet | | | |)ate: | 04/2 | 1/16 | | Well ID: | MW- | 22 | Sample II) | | | Sample Time: | <i>1535</i> | | ENTERLY DESCRIPTION OF THE PROPERTY PRO | | | |--------------|---------------|---------------------------------|---|---|-------------|-----------------|----------------------------|---
--|--------------------------------|---| | Casing dia | meter/type: | 2" AC | *. * | | Well locati | ion: SW Cos | | · a · c · c · c · c · c · c · c · c · c | www.co.com.co | Weather: Cl | loody/Rain | | Scree ed | interval(s): | <u>50-55</u> | note the selection of a contract of the selection to | | Sampling | personnel: 0T | JAB | | magazina ayan a sayan say | | | | Total dept | h: 55° | | lagarita de la companya de la compa | ~ | Sampling I | method: Low-flo | w micropurge | | #E ################################### | | | | Initial dept | h to water (\ | w/o pump): 4 | 1.75 | | Water leve | el indicator: H | ecron | | Mary American Service (Co. 1) | | | | Final dept | n to water (v | v/o pump): 🌱 | 2/2 | | Water qua | lity meter: | YSI ROP | U 5 | and the second of o | | | | Measuring | point: Non | th side of casi | ng | | Pump dep | th setting: 52 | | | Pump '>pe/m | odel: M 64 S | 08A 55 | | 5 min | Δ < 10% | Δ < 10% | | | Δ < 0.1 pH | | Δ < 0.3 ft | < 1L/min | | < 0.5 L/min | Parameter Stabilization Emits (3 consecutive readings) | | Time | Temp
(°C) | Conductivity
(nS/cm) (µS/cm) | DO
(%) | DO
(mg/L) | рН | · ORP
(mV) | Water Level
(feet btoc) | Flow Rate
(L/inin) or
[mt/min] | Turbidity
(NTU) | Purge
Volume
(L) or (mL) | Additional Comments | | 1522 | 21.2 | 1.23 | 12.0 | 0.97 | 6.36 | -37.8 | 47.21 | 400 | 2110 BU | | - ugho fished | | 525 | 24.7 | 1.22 | 12.0
2.5
1.0 | 0.19 | 6.30 | -38.9 | 48.29 | <i>000</i> | 1874110 | ~~~ | - region fribul
- stranginica. Blog | | 15028 | 25-1 | 1.21 | | 0.09 | 6.26 | -34.8 | 48.28 | 300 | - 0.46 | | | | 1531 | 25.7 | 1.19 | 0.4 | 0.03, | 6.21 | -21.0 | 48.52 | Ce82 | - Over | | | | 1534 | 25.9 | 1.18 | 0.1 | 00 | 6.21 | -14.7 | 48.46 | 300 | 158.0 | | | | | | | | | | • • | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | 7 1 1 | | 15 | feet | | | | | | | | | | | | 19:11 | // | | | | | | | | | | - Jeen | | O | | | A CONTRACTOR AND A CONTRACTOR OF THE | | | | | | | | YU A | | | | | | | | | | | | | YU | 15 | | | | | | | | | | | | • | V | - | and the second s | | | | | | | | | | | | | | | | | | | OT | |----------|-----|-------| | Recorded | Ву: | · • · | | . | 1 | | / | |----------|--------------|-----|----------| | Sheet | | or |
 | | Date: | 200 February | 160 |
2615 | | Well ID: | MW- | D | Sample ID | | i i i i i i i i i i i i i i i i i i i | Sample Time: | Contraction of the o | | | | | |--|--|---------------------------------------
--	--	---	--
--		**************************************	
--	--	--	--
AND THE PARTY OF T			
--	--		Casing dia
--	-------------	--	----------------------------
25.5	0.99	0.3	0.02
--	--	---	---
15.8	Ø	offing Cutt wir induction	
--	--	--	---
--	--	---	-----------------------------------
--	--	---	--
--	---------------------	--	--
---	--	--	--
--	----------------------------	-------------------------------------	--------------------
--	---	---	--
--	---	--	--
--	--	--	--
--	----------------------	-------------------------------------	--
--	---	---	--
--	----------------	--	---
--	------------	---------------------------------------	---
Weather: Co	oly Cloudy 6005		
--	--	--	
--	--	--	---------------------
Montsona Pro			
--	--	--	--
--	--	--	--
--		Casing dia	Casing diameter/type: 2"PK Well location: BFE Lot Weather: Rain, 50F
contraction	- Common and the state of the Commonweal of the Common and Com	***************************************	Production of the second secon
--	---		Casing dia
depth	to water (v	v/o pump):	17.20
Casing dia	meter/type:		
L/min	Parameter Stabilization Limits (3 consecutive readings)		ime
--------------------	--------------------------------	---	
--------------	-----	--------	--
Water qua		YSI	
Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
220	41.0		
--	--	-----------------	----------------------------
--	--		Casing dia
--	----------------------------	--	--
--			
-g-antonialsomousanssamean	Pump dept	th setting: 30	> ^
Annual Statement of o		Δ < 0.1 pH	**************************************
25.1	6.53	6.2	0.51
--		Casing dian	neter/type:
--	---	----------------------------	---
reasonable fil the first our gas gas gas gas gas and desirable special agreement of			
--	---	--	--
--	--	--	---
--	----		Well ID:
--	--	--	--
--	---	---	---
4.5	0.37	6.23	152.3
--		Casing dia	ameter/type:
--	--------------------		Project Name:
140.97 278 4" 23.21 410 4" 144.18 284 4" 27.92 30 2" 27.91 30 3" 49.52 53 2" 49.52 53 2" 20.37 53 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 20.38 2" 20.38 2" 20.38 20.38 2" 20.38 2	SIZE ELEVATION DEPTH DEPTH ELEVATION DEPTH BAILED		
######################################		AND THE PROPERTY OF PROPER	
--	-------------	-------------------------------------	--------------------
--	--	---	--
--	--	--	------------
--	--------------------------------	-------------------------------	
--	--	---	---
nterval(s): 🥏	35"		
--	----------------------------	--	--------------------
-126,4	20.55	250	215-1
--	---	--	---
--	---		Casing diar
--	--	---------------------	--
--	--	------------	---
--	--	--	--
--	--	--	--
--	--		Casing dia
van van de bedeel	T DESMONERA ** 1887 POLITICA (1964) ON REPORT A DE DESCRIPTION DE SERVICIO DE SERVICIO DE SERVICIO DE SERVICIO	entertalista de la companio de la c	and the second second and the second
--	-------------------------	-------------	-------------------------------------
side of casing Pump depth setting: 8 15 marts 22.5 Pump type/model: VONCON			
to	Sampling p	ersonnel: Mari	
btoc) (mL/min) or (NTU) (NTU) Additional Comments	Measuring p	oint: North	side of casing
---		Casing dia	meter/type:
Sampling pe	ersonnel:	WG. AB	
274.8	160	1.51	
--	-----------------------------------	----------------------------------	---
Site Manager: John			
		Joseph .	Tom Hon
44	0.9	505	
1/26/16	1/26/16	50	54
4	850.0	100.0	50.0
850	100	50	88
7.22 | 10.00 | 21 | 31 | 100 | ,,, | · | 400 | 100 | | | 0.7 | 000 | 100 | 100 | | | 0.70 | 000 | 110 | | | | | | Р | oint Totals | | | | | | 400 | 100 | 50 | 44 | 0.9 | 505 | 400 | 100 | 50 | 44 | 0.9 | 505 | _ | 1/30/16 | 10:04 | 11:16 | 28 | 32 | 80 | 70 | 7 | 400 | 100 | 50 | 44 | 0.9 | 505 | 400 | 100 | 50 | 44 | 0.90 | 505 | No | | | | 2 | | P | oint Totals | | | | | | 400 | 100 | 50 | 44 | 0.9 | 505 | 400 | 100 | 50 | 44 | 0.9 | 505 | | | | | | | • | onit rotals | | | | | | 400 | 100 | 30 | 44 | 0.9 | 303 | 400 | 100 | 30 | 44 | 0.9 | 303 | | | | | | 1/30/16 | 10:06 | 11:18 | 27 | 31 | 75 | 70 | 7 | 400 | 100 | 50 | 44 | 0.9 | 505 | 400 | 100 | 50 | 44 | 0.90 | 505 | No | | | | 22 | Р | oint Totals | | | | | | 400 | 100 | 50 | 44 | 0.9 | 505 | 400 | 100 | 50 | 44 | 0.9 | 505 | | | | | | , | | 1 | | | | | | | ī | | | | • | • | 1 | , | • | • | T | | | | | 35 | 1/30/16 | 12:43 | 15:11 | 29 | 33 | 100 | 90 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | | | P | oint Totals | | | | | | #RFF! | #RFF! | #RFF! | #RFF! | #RFF! | #REF! | #RFF! | #REF! | #REF! | #REF! | #REF! | #RFF! | | | | | | | • | onic rotals | | | | | | #KLI: | #KLI: | #KEI: | #KLI: | #KLI: | #KLI: | #KEI: | #KLI: | #REI: | #KLI: | #KEI: | #KLI: | | | | | 32 | 1/30/16 | 13:15 | 15:42 | 28 | 32 | 90 | 80 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 32 | | P | oint Totals | | | | | | #REF! | | | | | | | | | | | | | | 1 | | | | • | • | | | • | • | 1 | | | | | | 1/30/16 | 13:09 | 15:35 | 29 | 33 | 75 | 70 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 36 | | | oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.0 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | | | | | - | | | UIII TUIAIS | | | | | | 850 | 100 | 00 | 88 | 1.8 | 900 | 850 | 100 | 00 | 88 | 1.8 | 900 | | | | | | l | | 1 | 1 | 1 | I | | | | | | | ı | | | | 1 | Р | oint Totals | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | , | | | | | , | , | | | | | | , | , and the second | _ | | , | , | | | | | | | | Щ_ | Р | oint Totals | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | | | | | | | Page To | tals | | | | | | | | | | | | #REF! | #REF! | #REF! | #REF! | #REF! | #REF! | BOS 20 | 0 Injecti | ion Log | | | | | | | | | | |-------------------|----------------|---------------|--------------------|------------------------------------|-----------------|-----------------|-------------------------|-----------------------|---------------------------|-----------------------------|----------------------------|---------------|------------------------|-------------------------------------|-----------------------------|-------------------------------|------------------------------|-----------------|--------------------------|---------------------------------------|------------------------|-----------------|-----------| | Project No.: | 15250.02 | Site: | | Jones R | oad Supe | erfund Site | | | | AREA: | | | | | | | В | | | | | Page: | 1 | | Client: | EA - Engir | neering, S | cience, and Techno | logy | | | | | Injected | Product: | | | | | Е | HC - L, Dry l | Mix, KHCO3, | , DHC | | | | Date(s): | 1/31/2016 | | Address: | 11600 Jon | es Road, l | Houston Texas | | | _ | | | Injec | tion Crew: | | | | TJI | laley, Rich | Freeman, I | David Fonta | ana, Byron I | Pitulski | | | Drill Rig: | | | | | 1 | | | | | | 1 | | | ī | ı | • | 1 | | 1 | , | , | • | | | | | | Area
Point No. | Date
(2015) | Start
Time | End Time | Top
Interval
Depth
(feet) | Depth
(feet) | Press.
(psi) | Flow
Press.
(psi) | Flow
Rate
(gpm) | Target
Water
(gal.) | Target
EHC - L
(gal.) | Target
Dry Mix
(lbs) | (lbs.) | Target
DHC
(Its) | Target
Total
Volume
(gal.) | Injected
Water
(gal.) | Injected
EHC - L
(gal.) | InjectedD
ry Mix
(lbs) | KHCO3
(lbs.) | Injected
DHC
(Its) | Injected
Total
Volume
(gal.) | Surfacing
Yes or No | Notes/Comments: | | | /2 | 1/31/16 | 7:57 | 10:22 | 50 | 54 | 80 | 70 | / | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 62 | | D | l
oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | | | | | | | | OIIIC TOTALS | | | | | | 850 | 100 | 00 | ŏŏ | 1.8 | 955 | 850 | 100 | 50 | ŏŏ | 1.8 | 900 | | | | | | 1/31/16 | 8:00 | 10:25 | 29 | 33 | 75 | 70 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 38 | | | | | | | | | 000 | | | | | | 000 | | | | | | | | | | | | Р | oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | <u>.,</u> | 1/31/16 | 8:30 | 10:53 | 29 | 33 | 80 | 70 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 56 | | P | oint Totals | | | | | | 850 | 100 | 50 | 88 | 10 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | | | | | - | | • | onic rotals | | | | | | 000 | 100 | 30 | 00 | 1.0 | 700 | 030 | 100 | 30 | 00 | 1.0 | 700 | | | | | | 1/31/16 | 8:35 | 10:58 | 29 | 33 | 85 | 80 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 37 | P | oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | | | | | | | | T | | | | T | _ | 1 | | T | | | | | | | | | | | | | | 58 | 1/31/16 | 11:45 | 14:06 | 29 | 33 | 80 | 75 | / | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | | | P | oint Totals | | | | | | #RFF! #REF! | #REF! | #REF! | #REF! | #RFF! | | | | | | | | | | | | | | #IXLI: #IXEI: | #IXLI: | #IXLI: | | | | | 51 | 1/31/16 | 12:17 | 14:30 | 29 | 33 | 70 | 65 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 31 | | P | oint Totals | | | | | | #REF! | | | | | ī | | 1 | | 1 | | | | | ī | | | | • | 1 | , | , | 1 | • | | | | | | | 1/31/16 | 12:15 | 14:28 | 29 | 33 | 70 | 65 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 42 | | D | oint Totals | | | | | | 850 | 100 | FO | 00 | 1.0 | 955 | 050 | 100 | 50 | 00 | 1.0 | ٥٢٢ | | | | | | | | OIIIC TOTALS | | | | | | 850 | 100 | 50 | 88 | 1.8 | 900 | 850 | 100 | 50 | 88 | 1.8 | 955 | | | | | | | | | 1 | Р | oint Totals | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | -lat Tatala | | | | | | | | | | | | _ | | | | | | | | | | | | Р | oint Totals | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | | | | | | | Page To | tals | | | | | | | | | | | | #REF! | #REF! | #REF! | #REF! | #REF! | #REF! | BOS 20 | 0 Injecti | ion Log | | | | | | | | | | |-------------------|----------------|---------------|--------------------|------------------------------------|---------------------------------------|-----------------|-------------------------|-----------------------|---------------------------|-----------------------------|----------------------------|--------|------------------------|-------------------------------------|-----------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------|---------------------------------------|------------------------|-----------------------------------|------------| | Project No.: | 15250.02 | Site: | | Jones R | oad Supe | erfund Site | | | | AREA: | | | | | | | В | | | | | Page: | 1 | | Client: | EA - Engir | neerina. S | cience, and Techno | loav | | | | | Injected | d Product: | | | | | E | HC - L, Dry I | Mix, KHCO3 | DHC | | | | Date(s): | 2/1/2016 | | | | | Houston Texas | - 37 | | _ | | | | tion Crew: | | | | TJ | | - | | ana, Byron I | Pitulski | | | Drill Rig: | | | | | , | | | | | | | , | | | | | | · j, · · · · · | , | | , - j | | | | | | | Area
Point No. | Date
(2015) | Start
Time | End Time | Top
Interval
Depth
(feet) | Bottom
Interval
Depth
(feet) | Press.
(psi) | Flow
Press.
(psi) | Flow
Rate
(gpm) | Target
Water
(gal.) | Target
EHC - L
(gal.) | Target
Dry Mix
(lbs) | (lbs.) | Target
DHC
(Its) | Target
Total
Volume
(gal.) | Injected
Water
(gal.) | Injected
EHC - L
(gal.) | InjectedD
ry Mix
(lbs) | Injected
KHCO3
(lbs.) | Injected
DHC
(Its) | Injected
Total
Volume
(gal.) | Surfacing
Yes or No | | | | | 2/1/16 | 8:00 | 10:26 | 29 | 33 | 70 | 65 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 54 | | | 1 | Р | oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | 1 | | | 40 | 2/1/16 | 8:05 | 10:31 | 29 | 33 | 75 | 70 | / | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | ļ | | | 40 | | | sint Totals | 1 | | | | | 050 | 400 | 50 | 00 | 4.0 | 055 | 050 | 400 | 50 | 00 | 4.0 | 055 | | | | | | | Р | oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | | | | | | 2/1/16 | 8:10 | 10:37 | 29 | 33 | 80 | 75 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 49 | 2/1/10 | 0.10 | 10.37 | 29 | 33 | 00 | 73 | , |
630 | 100 | 30 | 00 | 1.0 | 733 | 000 | 100 | 30 | 00 | 1.00 | 733 | INU | | | | ., | | P | oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | • | • | | | | | | | | | 2/1/16 | 8:15 | 10:42 | 29 | 33 | 75 | 70 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.80 | 955 | No | | | | 46 | P | oint Totals | | | | | | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 100 | 50 | 88 | 1.8 | 955 | 50 | 2/1/16 | 12:40 | 15:06 | 29 | 33 | 65 | 60 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 163 | 115 | 250 | 8.33 | 1033 | No | Added extra materials as per of | | | | | 15:30 | 17:00 | 29 | 33 | 65 | 60 | 7 | | | | | | | | | | | | 630 | | Tank and system rinse, used anaer | obic water | | - | | Р | oint Totals | | | | | | #REF! | | | | | 2/1/16 | 12:50 | 15:16 | 29 | 33 | 75 | 70 | 7 | 850 | 100 | 50 | 88 | 1.8 | 955 | 850 | 163 | 115 | 250 | 8.33 | 1033 | No | Added extra materials as per of | client | | 44 | 271710 | | oint Totals | 27 | 33 | 7.0 | , 0 | · | #RFF! | #RFF! | #RFF! | #RFF! | #RFF! | #REF! | #RFF! | #RFF! | #RFF! | #RFF! | #REF! | #REF! | 110 | Added Sale Metoricis de por | JIIOTIK | | - | | | | | | | | | #IXEL. | #IXEL. | #IXELL | #IXELL | #IKELL | #IXEL. | #IXELL | #IXEL | #IXELL | #INCI: | #IXEL. | #IXELL | Р | oint Totals | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | | | | | | | | | | | | | | • | Р | oint Totals | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | P | oint Totals | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | | | | | | | Page To | tals | | | | | | | | | | | | #REF! | #REF! | #REF! | #REF! | #REF! | #REF! | | | | | | | rage 10 | ituis | | | | | | | | | | | | #REF: | #REF: | "IXLI" | #IXEL: | "REF: | "INCI" | | | | | Tank | | | | | Outside | | | |--------|---------|-------|--------|-------|-----------|---------|--| | Number | Date | Time | Volume | Batch | Temputure | DO mg/L | Comments | | 1 | 1/23/16 | 9:00 | 3400 | В | 39 | 0.38 | Added 4 gallons EHC- L and 20 lbs Sodium Sulfite | | 2 | 1/23/16 | 9:20 | 3400 | В | 39 | 0.33 | Added 4 gallons EHC- L and 20 lbs Sodium Sulfite | | 3 | 1/23/16 | 9:40 | 3400 | В | 39 | 0.28 | Added 4 gallons EHC- L and 20 lbs Sodium Sulfite | | 1 | 1/23/16 | 15:00 | 3400 | В | 57 | 0.33 | G | | 2 | 1/23/16 | 15:25 | 3400 | В | 57 | 0.23 | | | 3 | 1/23/16 | 15:45 | 3400 | В | 57 | 0.26 | | | 1 | 1/24/16 | 10:45 | 3400 | В | 61 | 0.33 | | | 2 | 1/24/16 | 11:00 | 3400 | В | 61 | 0.32 | | | 3 | 1/24/16 | 11:30 | 3400 | В | 61 | 0.3 | | | 3 | 1/25/16 | 15:00 | 3400 | В | 58 | 0.13 | Added Entire Batch B Solution | | 3 | 1/26/16 | 8:00 | 3400 | В | 44 | 0.23 | | | 3 | 1/26/16 | 14:45 | 3400 | В | 46 | 0.1 | ORP -354, New B Batch | | 3 | 1/27/16 | | 3400 | В | | | | | 1 | 1/27/16 | | 3400 | В | | | | | 3 | 1/27/16 | 13:36 | 3400 | В | 52 | 0.2 | ORP - 304 | | 1 | 1/27/16 | 16:04 | 3200 | Α | 51 | 0.22 | | | 3 | 1/28/16 | 7:25 | 3200 | Α | 39 | 0.23 | ORP -344 | | 1 | 1/28/16 | 7:40 | 3200 | Α | 39 | 6.4 | Added 20 lbs Sodium Sulfite | | 1 | 1/28/16 | 12:14 | 3200 | Α | 59 | 0.33 | | | 3 | 1/28/16 | 16:00 | 3200 | Α | 66 | 0.24 | ORP - 314 | | 1 | 1/29/16 | 9:40 | 3200 | Α | 54 | 0.25 | | | 3 | 1/29/16 | 13:00 | 3200 | Α | 72 | 0.28 | ORP - 316 | | 1 | 1/30/16 | 7:30 | 1600 | Α | 55 | 0.39 | | | 3 | 1/30/16 | 9:06 | 1600 | Α | 59 | 0.22 | ORP - 336 | | 2 | 1/30/16 | 9:30 | 3400 | В | 59 | 0.21 | | | 3 | 1/30/16 | 12:24 | 3400 | В | 71 | 0.22 | ORP - 320 | | 1 | 1/30/16 | 15:00 | 3400 | В | 75 | 0.23 | | | 3 | 1/31/16 | 7:32 | 3400 | В | 63 | 0.1 | ORP - 392 | | 2 | 1/31/16 | 8:00 | 3400 | В | 63 | 0.34 | | | 3 | 1/31/16 | 11:40 | 3400 | В | 72 | 0.24 | | | 1 | 1/31/16 | 13:00 | 3400 | В | 75 | 0.37 | | | | | | | | | | | ## ATTACHMENT E FIELD NOTES Location Harris Co, TX Date SIRILIU Project / Client, Ronog Rd, ESA Region DL Site walk / Pre-launch injection meeting 0935 Daport For, 5, 6 WRATHER! Wostly cloudy and becquein windy with thendostorms / kely in offernoon High 690f. Winds 20-30 mph. Church of 1 min 100% PLANFOR THE DAY: She walk with EPA/TEFO etall, injection prewalk 0938 ATTHE ON SIL TERA: Marken Lang EPA: Camile SEKO: EN Que hom as, Pat Appel DAGO West with SEKO stell for 5 year review site walk 1000- 1400 Site Walk 1405 Meet with preparty manager Jesse to go over injection activities schulched to begin next elast 1500 Meetin concluded 1555 Apart site to pake p pullet jack for down unleveling in am. Project/Client Dores Rd, EAA Region VI Site world Mobilization for injection activities 0430 Deput to office WESTER: Mostly Clarky early, hen sunshing In the after room High 53 °F Winds NAW at 15-25 mph. 0200 Deport for site 0705 Swely Machine * Truck with injection dums on side. PLAN FOR THE DAY: Begin Mobilizing Equipment and maderials + Bill of lawling has no backeria for mounis - B: 11 of luding also has a liftgute truck being sent by Dwelity Transport with a lift sake. The truck had neether. The cherge rate will de checked. 0745 Unloading of drums bagues Servity Fence in place X Phono: unloading and learns for frailes * OHC + K Exculurate not on triday delice cy. will contish with Proxy 0200 Contirm with Proxy chem that 2nd deliver will take place Manday marning dans 1030 Aguy Mitsubish: SUVIS in Rencelon crea. Tags are long expired. Et, had men formed SUV to properly management. Vista and CA | Location Hwi | 6 TX | | Date | 0/03/14 | 35
- | |-------------------|----------|---|--------|---------|---------| | Project / Client_ | Joves Ru | 1 6w | Plune, | ERAG | | | Mobilizar | lon | ann a seile com the degree and the Select Physical contribution | : | | | 0700 Report For Office WENTRER: Suny, hal 578 winds 1866 and icerable PLAN FOR 90/6 DAY: Continue staging equipment. Tontinge to condition water to make it anerobic 0730 Sweets Mectine 0850 00 cheek on 3 fanks has diagra Mix funk 1: 0.30 Mix lanka: . 33 Batch tank: 0.28 (funk 3) X Phas: Plumous preport tourks 1120 Supplies shipper bringing replacement bull welve for puriping tracter will not de 1140 Philo: Stoged dums behind shapping center 1430 Prims taget behind building where preparty manger Suggested 1430- to Set up completal for there 1530 april 5.4 | Location Hwris Co, TX | Date 01/25/14 | 37 | |--|-----------------|-----| | Project / Clienty Jones RJ GW | 7 7 | | | Mixing Injection | | | | The state of s | | | | 00 mole: 0.20 7 | 0.13 | | | 485 DO: 1.23 m/1 | 050 | | | ORP - 360 | - 507 | | | Batch 1: 8 drums EAL | | | | 8 Bags KHCO3 | ENC O. | | | 250/ 1/110 | 2 2 7 7 | | | 25 Bass KHCO3 20 Bags Sodem 3400 Sal warter | < 10/ | | | O Bugg Sodum | Sulfite por ten | 6 | | 3900 gal water | | | | 1530-1800 Contypue injection | n prep | | | was Deput Site | - | | | | | | | | _ | الت | 13/2 Point 53 Complete 955 de blu gel = 1. 4 foot rise in Man-ow over 4hrs 1832 MW-OLE Drw 30.95 Location / twin (0, TX Date 01/24/15 Project / Client , Fores Pol Gw Plume , EAA G au Incursos 0630 Departor Site 0700 Arrangite WEATHER. Diecast with rain stowers. Migh New 550 Winds NNE at 10 - 20mply Chace of ruin 60% 0750 Swely Meeting RAN FOR THE ASY: (Segin injection of B concentration points Will dreck mix DOA ORP one las titume before injulia.
Proposed Points (B conc.) 55 + 58 (shallow) (cl , 60 (despossible) 0735 Begin drains point 55 * Hoto, druing rads at point 55 Pre Injection Chemistry: DO: 0.27 mm/1 0849 Begin adding OHC to injectable 7.22 XPhoo: Addies DHC to mix Ofly lain 55 injection sherted 0924 - 5.05 gul min feeled point 55 at 50ps; 0926 Point GB started - 5. 50 gpm at 52 pm 0931 Vister will stert dowing oads at point & (dep) Project / Client Janus Rd GW Phyme, RA C GW Incomes 1817 Post 39 Cayster 955.0 get 1830 Partch 43 No Chaye (B cone) - 8 drums EHC - 8 days dry mix - 7.5 days KHO3 * DHC will not be added in til morning Mas Dapart Site Location Hurris Co, TX Date 01/27/16 Project/Client Jones Rd GW Plume, ERA G GWInjection 1000 Point 33 started - Acrial Video + Pus Jaken Dake Point By showled 1047 Additional line bules / hose polecios relived for ite Thos Custa cheuning drins for disposal U47 Foint 60 completed 955 1148 Point 52 completed 955 gal 120 Bajin Prepon Rouch 44 (Bears) - Point 59 will be next, 1217 Sein druing point ST + Plus driving point 59 1220 Will begin driging point 38 1253 Point 34 completed 955 gal 1255 Begin druins point 48 1305 Diving at point 59 will not extend part 50'. Injection zone is \$ - 4le-50 653 Injection at 39 proceeding with no issues * Photo Injection of point 48 1415 78200 Geographe Broken Down 1445 Stort injection on point 31 1455 Begin driving point 29 15 de Bosin injection on pt 29 Location KWISCO, TX Date 01/27/16 Project / Client Jones Rd CW Plus , &M Region TI OW Injections of Micho: Visto repairing borelide with concete (00) Visou pre conditioning wento in tank I for A concentration injections feeling place Landriow -00.22 Tank - Tank 2 contains pre-conditional number for B concentration + No Change in Barten 4 (Bronc.) - Hun previous mixes 1622 PJ 48 complete 955 sal - 1615 for pot point 59 955 gal * 78020 Geopide Still down 1642 78220 repaired/rynning (658 Beginning Batch 5 (A conc.) Mixing 1700 Poin 31 Completel 955 gal 40 1745 Poin 29 completel 955 gal 40 1745- 1830 Clean up a mix/circulate datch 1835 Depart Site Project/Client Jones Rd GW Plune, EPA Reg. G OW Injections 0630 Daput Por S:te 0700 Herive on sile WEATHER: Suny high Ce8°F. Winds W at 5-10 mph 015 Sely Meeting PLAN FOR THE DAY: Continue injections at A concervention points Riss setup on Appoints Haml 17 00: 0.23 as/1 ORP: -344 * Plato: setupon 14 4 17 0851 14 of 7 och injecting * Physic Driving pt 28 * Noto: Spill kit for possible daylighting * Owner of Mckong Restaurn t complained about order to off his parting spaces, We agreed to shift the next 2 dering leastours for I ring to his spaces so we can reway the exclusion zone Sion the troat of his store 0924 Beesin meeting point 28 I Points are taking Flirid well. 7-Ogpmat 40-ceo ps. Vista vill drive additional rody at ots 15 and 2 to speed operation Project / Client Jones Rd GW Mume GN Injections 0969 Payhyhring out of MWOI --will reduce pressure 1009 Stoot injection at Pt 16 0959 Point 14 completed 450 gal 1503 Point 17 completed 450 gal 1008 Point 20 injection Startel 1023 Point 23 injution completel 1130 Preputy manager Jesse is upset about store kont jujection locations. He said we we taking if too much space. I explained to him up are trying to chew store trant, locations as guilty as possible with priority. We aim to hime all store front injection points done, by end ofday, 1200, Mekons Store Front Clear of agropment. Aluxo Mckons store for thereel 1223 Voint 18 pains, hooked up to injection tailer * Coint 16 Deinispuchel. - both soil need * Point 24 nil de moved 3 Feet west to avoid proximity to CUT-01 123 boint 8 injection showted | Location fluris Co. TX | Date | |--|------------------| | Project/Client Tones Rd GWF | lume | | 6w Tajections | | | 1302 Pointle not feeling This | / | | 1316 Bezin druming point 25 | 5 | | extend to the something | and a Course | | Those Orving and remove | in park Ket 25 | | 1351 Degin injecting point | 28, | | How User Degins A cone | ntention in is | | 480 Part 25 Come 10 41 | | | - Point 23 completed, | | | 1945 Setup on AUD point | 429 | | 1548 Barch # Co Camplel | | | ORP: -318 mg// | | | * Tricitions will continue o | 4 // (re-aveled) | | in begin of \$24 | | | (Codo Daylish y new point | 19 Cifal From | | ahose and not legand for | on the ground | | * Photo: Liquid on ground | nu pt19 | | * Phopo: Liquid on ground
1645 Bain injections at 16
1730 Point 24 Complehel | · 4 2cf | | 1730 Point 24 Complekel | 450 gel | | 1734 Point We Coppleter | 1 | | 1734-1840 Cleanup. | | | 1850 Deput Site - 10 Apo. | nts completel | | | | | | | Project / Client James Rd Gw Plume, ESA G GW Injections Hilities anyway. The newpoint to soft Ce of will be approximately /2 distance deliver the 2 points. The comment point Ce+7 will recieve sloude whome or 100 * Moo: location ? in itslifychistor 0925 Pumping on 26, 19, 27 and 9 Thus Point Cet 7 new location Tojections Campleled 092819 injection completed 0935 27 injection completed * Tunk I conditioned 0951 Paint (e+7 Class gal) started no daylighting from My 02 as of yet 10 de Point 20 completed * Riz will be moved schind brilding for wints 01-05 KPhoto: Ens settingup on pt 5 1037 Ris setting upon point 13 115 Begin mixing batch 47 (A conc) + This Cleaning dryns to disposal Conto. 70 gal prior to duy capter Point 6 +7 946 galloss Location Hunis Co, JX Date 0/29/14 Project / Client Sans Rd Gw Plume EPAGE 6W Fijection Point 6+7 Emoshed at 1215 - Points, 05 + to driven ready for injection Bath ORP + DO readys: 12188 OR1: -316 13:12 - Point 05 - Mich Regin - 80 psi/7 gallons 12:15 - 03 driving point 03 Griss 13:15 - drum point 08 12:32 13:33 - Begn, drain point 10 13:58 - complete draining point 10 Begin Tyechel of point 14:07 Begin drawy somt of: 21 - Captor drangt pout 11 14:10 - Bigun drang (point of 14:11 - Sun mech of port 10: 14:11 - Buyl migch of port 08/4; 14:25 Injection of port 05 computal (photo) Location Harris Co. TX Date 01 29/2016 51 Project / Client Jones Red 6W Plyme GW Injector 14:30 - Begn nicht of post 1 15:00 - Ingenton of pont 08 combiled 15:10- point 01 - bong complete 15:15+ Begin Injector - Port of 15:14- Begin driving point 12 15:23 - Inject of point 01-15:30 - Trickth of pont 03 15:35 - Compater down port o 15:41 - Begun injection of point 12 15:42 - Conglete injection of put 1640 Begin prop at auten 8 - will be moved in morning - prep water will not neet 24 hour prep my will be trual A conc Earth or 1705 Bean pulling Point ld X Photo: Allying point for 120 Camplete Poin 03 michion Location Hurris Co, TX Date 01/20/14 Project/Client Jones Rd GW Plume RIAG GW Injections 02-30 Deput for S. 4 0700 Arrive on site WEISTARER: FOS pury becoming mostly sunny this oftenoon high 770F. Winds SSWat 10-20 mph PLAN FOR THE DAY: Continue + complete A comentration /ocations, continue a resume B concentration locusions 0710 Sweety Meeting 0720 Begin driving locations - begin daving line outers * Will mix 18 locations north of A consentration to complete A points Batch 8 8 drums EHC & bugs dry mex 3. Co L DHC - 4 buys KHCOZ * Pholo: Se thing up sately devices for lot and driving location 13 4 Alxarions Remains d, B, 21 422 Barten & fearlines 00: 0.02 m/C ORP: -338 | DDMDcconecidategasteritesia (careta control co | | |--|------------------| | Location Huris G. TX | Date 01/30/10 55 | | Project / Client Jones PJ Cu |) Pluse | | GW Injections | | | 1235 Shut in jewhon. | 35 | | | -2 | | onest and the | |--------------------| | | | | | | | | | | | | | | | - / you d - Norman | | | | | | K | | ; refressore | | | | And the World | | | | | | | | | | | | an and a blackless | | | 56 Location Hurres, TX Date 01/31/16 Project/Client Jones Rd GW Plame 6W Injections 0630 Separt to site 0700 Horwe on site WENTHER: (louds in the morning Some decreese in clouds late in the day, High new 80°F. Winds 55W at 10-20 mph. 0715
Every Meeting PLAN POR THE DAY: Continue B concentration injections 0720 Besis poshing rods at Co2, (dego), 38 37 and 56 - 2nd 42, 47, 58 + 51 2nd Satch Begin injections 0754 Dein injections at 62 at * Keurgate is not open. Will call Jassie to get lack combination. No shops we open Sonday 14 appears 500 lest message with property owner/manager Jessie. If we do not hear a response we will cut & replace the locks 0958 Besin steering for butch 11. 1018 Point 38 complete, 1025 Point 37 complete > Photo folling rads form, points 37058 1110 Yours 56 Ced complete desinpullas Location Harris 6, 7x Date 01/31/16 Project / Client Jones RJ GW Plume GW Friedwas * Photo: Mixing KHLOZ into batch / 1117 Usta desins diving sods at part 47 Batch Il mix inclinised - DO 0.24 nyll - ORP-320° Sphore: Working wen 42. 47,5851 1337 Begg mining butch /2 1400 Pant 47 completed 148 Point 57 completed 1500 POINT OF Saus pulled 1530 - 1730 Cleany 1745 - Deport site Project/Client Jones & GW Plume (W Injections Date 02/20/10 59 1000 Points 40, 44, 49, 50 , nachin completo Batch 13 60 Drums EHC 13 Bags Dy Mix 15 Bays DCO3 25L DHL 2515 sal 40 (cauche) 1044 Bosin Mixing Bull 13 1046 Begin pulling lads at points 40,46, 48,50 Williagin driving remaining points 1005 Injection Mixed 00: 0.24 ms/L. ORP: -216 13 8 Vista vegins cleaning/washing water holding tunks × Phoo: Cleans Funks. * was water deing used is anosaice water From Lenk 2. All wash water will be conjected unto last point X hoto cressive nushing staging Project/Client Jones Rd GW Plume, EPAG GW Injections Ours Opport for site 0700 Arrue on site WEATORE Purtly Cloudy Skies, Holy 7408 Winds www of 10-15 mpl 0715 Safety Meeting PLAN FOR THE DAY! Continue de-mot from site 0720 Pregin Stagins Geoproles for de-mal & Photo: 5 lapus Geoprobes * Phos. All disms removed 4 used have behind Evilding 0930 fain for rent picks up butch took 1247, Transporter on site to local materials * Thicks: Couldes Geoprache * Vista will take the majority of the chies - Visha compt use pullets -will stenk new dring berief building 1443 Rain to Rest reforms tor, temp 42 1456 2 Rain for sent trick returns for Hogoro: luwing tunk, Thero: Panes washing Street ing area 1615 Continue power washing lot | 62 11 / TI Date 02/03/16 | | Locati | ion | | to a comparison and a graduate of the com- | to a good decision of his house of the | | | The state and their services the | Dat | | | netorano come so | . 0 | |--|--|--------|-----|------------------|--|--|--|--|----------------------------------|-----|--|--|------------------|-----------------| | 62 Location Humis Co, The Date 02/02/16 Project / Client Jones Re Gew Plume | Project / Client | | | | | | | | | | | | | | | 1 / All I | | | | | | | | | | | | | | | | 1500-1800 Complete de-mob, foncing,
fort lift and portolet will be pulsed
up oa/03
1805 Depurt site | | ì | | | | | | | | | | | | | | 1500-1800 Complete de nos, teners | | | | | | | | | | | | | | | | tot lit and portalet will be pure | | | | | | | | | | | | | - | | | $\frac{\sqrt{\rho}}{2} = \frac{6\lambda/63}{1000}$ | | | | | | | | | | | | | | | | 1805 Report S. Le | | ļ | | | | | | and the second s | - | - | at the ball the | | | | | - 1 | | | : | | | | | | | | 6.7 Tow-ships | | | Paragraph of the Section of | | | | | | | | | | | | | | | | to the state of th | | | | | | | | | | | | | | | | -9 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | :
:
:
: | | | | | | | | | | | | | 144 | | | | | | | | | | | | | | ## APPENDIX F PHOTOGRAPHIC DOCUMENTATION Photograph No. 1 (30 November 2015) Description: Purging MW-06 Photograph No. 2 (30 November 2015) Description: Preparing to do low-flow sampling in MW-22 April 2019 Photograph No.3 (1 December 2015) Photograph No. 4 (2 December 2015) Description: Water purge from MW-20 Photograph No. 5 (3 December 2015) Description: Low flow purging and sampling MW-02 Photograph No. 1 (25 January 2016) Description: EHC pre-mix Photograph No. 2 (25 January 2016) Description: Injection Tool April 2019 Photograph No.3 (25 January 2016) Description: Nitrogen Tank and DHC Injection Set Up Photograph No. 4 (26 January 2016) Description: Driving Injection Rods at Point 63 Photograph No. 5 (26 January 2016) Photograph No. 6 (26 January 2016) Description: Pumping EHC April 2019 Photograph No. 7 (26 January 2016) Description: Checking DO and ORP levels prior to injection. Photograph No. 8 (27 January 2016) Description: Injection rod during injection. April 2019 Photograph No. 9 (29 January 2016) Description: Concrete repair bore hole Photograph No. 10 (29 January 2016) Description: Daylighting from IW-3 April 2019 Photograph No. 11 (30 January 2016) Description: Setting up safety devices. Photograph No. 12 (1 February 2016) Description: Staging drums for removal. Photograph No. 1 (18 April 2016) Description: MW-02 Photograph No. 2 (18 April 2016) Description: MW-03 Photograph No.3 (18 April 2016) Description: MW-08 hidden under 8 inches of soil Photograph No. 4 (18 April 2016) Description: MW-20 Photograph No. 1(22 September 2016) Description: MW-20 Photograph No. 2 (22 September 2016) Description: MW-09 Photograph No. 1 (23 February 2017) Description: Purging MW-01 Photograph No. 2 (22 February 2017) Description: Preparing to gauge MW-03 Photograph No.3 (21 February 2017) Description: Setting up on MW-08 for
low flow Photograph No. 4 (21 February 2017) Description: Location MW-20 Photograph No. 1 (13 September 2017) Photograph No. 2 (13 September 2017) Description: Location MW-20 Photograph No. 1 (27 March 2018) Description: EHC pre-mix Photograph No. 2 (27 March 2018) Description: EHC mixing area Photograph No. 3 (27 March 2018) Photograph No. 4 (28 March 2018) Description: EHC staging area Photograph No. 5 (28 March 2018) Description: Injection point plugging # APPENDIX G STATE OF TEXAS INJECTION WELL REPORTS ## STATE OF TEXAS PLUGGING REPORT for Tracking #185546 Owner: **US EPA Region 6** Owner Well #: P1 - P63 Address: 1445 Ross Ave Grid #: 65-04-4 **Suite 1200** Dallas, TX 75202 Latitude: 29° 56' 32.38" N Well Location: 11600 Jones Rd Lonaitude: 095° 35′ 04.6″ W Houston, TX 77070 Elevation: No Data Multiple boring locations throughout the shopping center parking lot. 63 locations 10 foot on center varying in depth of 33 - 54 feet bgs. Injection of emulsified vegetable oil into each location for groundwater remediation purposes. Well County: Harris Well Type: **Environmental Soil Boring** Number of Wells Plugged: 63 Drilling Information Company: Vista GeoScience Date Drilled: 2/3/2016 **Driller:** Mike W Martin License Number: 59374 Well Report Tracking #430595 Diameter (in.) Top Depth (ft.) Bottom Depth (ft.) Borehole: 1.5 Plugging Information Date Plugged: 3/28/2018 Plugger: Brad Orban Plug Method: Tremmie pipe cement from bottom to top Casing Left in Well: Plug(s) Placed in Well: Bottom (ft.) Description (number of sacks & material) No Data Top (ft.) Cement 10 Bags/Sacks Certification Data: The driller certified that the driller plugged this well (or the well was plugged under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the reports(s) being returned for completion and resubmittal. Company Information: Vista Geoscience 111 Postoak Dr. Whitney, TX 76692 **Driller Name:** **Brad Orban** License Number: 55014 Comments: No Data STATE OF TEXAS WELL REPORT for Tracking #430595 Owner: US EPA Region 6 Owner Well #: P1 - P63 Address: 1445 Ross Ave Grid #: 65-04-4 Suite 1200 Dallas TX 75202 Dallas, TX 75202 Latitude: 29° 56' 32.38" N Well Location: 11600 Jones Rd Longitude: 095° 35' 04.6" W Multiple boring locations throughout Elevation: the shopping center parking lot. 63 locations 10 foot on center varying in depth of 33 - 54 feet bgs. Injection of emulsified vegetable oil into each location for groundwater remediation purposes. Well County: Harris Number of Wells Drilled: 63 Type of Work: Groundwater Proposed Use: Environmental Soil Boring Remediation Borings Drilling Start Date: 1/22/2016 Drilling End Date: 2/3/2016 Diameter (in.) Top Depth (ft.) Bottom Depth (ft.) Borehole: 1.5 0 54 Drilling Method: Direct Push Borehole Completion: Plugged Annular Seal Data: No Data Seal Method: **Tremie** Distance to Property Line (ft.): **No Data** Sealed By: **Driller** Distance to Septic Field or other concentrated contamination (ft.): No Data Distance to Septic Tank (ft.): No Data Method of Verification: No Data No Data Surface Completion: Patched to match existing surface - asphalt Surface Completion by Driller or con Water Level: No Data Packers: No Data Type of Pump: No Data Well Tests: No Test Data Specified Bottom Depth (ft.) Description (number of sacks & material) Top Depth (ft.) Plug Information: 1 54 **Bentonite** Strata Depth (ft.) Water Type Water Quality: No Data No Data > Chemical Analysis Made: No Did the driller knowingly penetrate any strata which contained injurious constituents?: Yes | Top Depth (ft.) | Bottom Depth (ft.) | Natural Injurious Constituents | Unnatural Injurious Constituents | |-----------------|--------------------|--------------------------------|----------------------------------| | 33 | 54 | | Hazardous Waste Contamination | The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution. Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the > driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal. Company Information: Vista GeoScience 130 Capital Drive Suite C Golden, CO 80401 **Driller Name:** Mike Martin License Number: 59374 Comments: No Data #### Lithology: **DESCRIPTION & COLOR OF FORMATION MATERIAL** #### Casing: BLANK PIPE & WELL SCREEN DATA | Top (ft.) | Bottom (ft.) | Description | Dia. (in.) New/Used Type Setting From/To (ft.) | | | |-----------|--------------|--------------|--|--|--| | 0 | 54 | Silt & Clays | No Data | | | ### IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner. Please include the report's Tracking Number on your written request. Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880